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Abstract: Waste management is currently a fast-growing environmental business and one of solutions
to manage the huge amount of waste being generated on landfills is to use the disposed waste as an
energy source. There is a major focus on energy forecasting, highlighting the importance of having
reliable data on the volume and composition of municipal solid waste in landfills. However, the
lack of historical data is forcing the development of machine-learning based models. This study
contributes to this field by proposing a hybrid ANN-based model to forecast the total amount of
landfill waste, different waste fraction and the potential for energy recovery. The proposed model
includes an adaptive number of inputs adjusted to the relevant waste fraction and to the specific
landfill. The obtained results substantiated that the proposed model allows for stable and accurate
forecasting of recovered energy potential in cases where there is insufficient historical data. The
experiments showed that the model with 12 inputs (meaning the forecast of the future value takes
into account the last 12 months of data) was the most accurate in the energy forecasting task, with the
lowest forecasting error in terms of mean absolute error −8.9878 gigawatt hours per year.

Keywords: municipal solid waste; landfill; forecasting; energy; artificial neural networks

1. Introduction

Millions of tons of waste are generated worldwide every year, but only a small pro-
portion is properly disposed of or recycled, reused or otherwise recovered as a resource.
Population health, wildlife, soil, air, and marine ecosystems are still suffering from increas-
ing waste production and improper waste management. Toxins in landfills have a negative
impact on quality of life, and some waste has a decay time of more than 500 years. While
many improvements have been made in this area, the high volumes of waste accumulated
in landfills show that major challenges remain [1].

In recent years, the forecasting of municipal solid waste (MSW) has become a hot
research area. A number of researchers have developed different forecasting methods,
which are applied in different countries and regions; however, the methods developed share
the common goal of ensuring accurate planning and sustainable management of mixed
municipal waste generation [2]. Many socio-economic, demographic, or geographical
factors have been used to determine which of these has the most significant relationship
with MSW [3]. In general, the most commonly used indicators are population, income,
type of population, age groups, employment, electricity consumption, consumer price
index (CPI), gross domestic product (GDP) gross domestic spending on research and
development (R&D) [4]. Some researches additionally include education [5], culture [6],
territorial (regional) characteristics [7] or climate indicators [8]. For example, in the Czech
Republic, studies on MSW at different spatial levels together with socio-economic and
demographic indicators have shown that it is feasible to distinguish between spatial levels
in order to better understand the amount and composition of waste accumulated, but this is
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not the case for the lower spatial levels (municipalities and districts) [9]. Some studies have
shown that not only mentioned factors influence waste generation volumes, but regional
division separating the Western, Central, Eastern, Northern and the Southern parts may be
an influential factor [10]. Behavioral factors of recyclers (the waste bank, non-waste bank
members or non-active recyclers) can also be used to identify the recycling activity and
thus the total amount of waste [11]. However, to summarize, population and GDP have
been considered as the most important variables influencing waste generation.

Various artificial intelligence (AI) techniques and methods such as data clustering,
classification, dependency and logical relationships, and statistical algorithms have been
applied to build predictive models [12]. In addition, there is a growing focus on waste
management, landfills as a fuel source feasibility study, and scientific research on waste-to-
energy challenges [13–15].

The forecasting of MSW properties such as amount, composition, including calorific
values, is key information for ensuring successful waste management and optimization
of activities. Unfortunately, such characteristics of MSW cannot be directly predicted and
depends on many factors. Municipal waste varies from region to region because it depends
on the lifestyle of the people living in the community. Different countries face different
challenges, but this is often due to a lack of statistical information on MSW, so a variety of
indicators such as demographic and socioeconomic factors, infrastructure, culture, location,
climate, tourism, and many others are used employing with machine learning methods to
identify the most informative and those that correlate well with MSW, such as composition,
seasonality, etc. Several studies have been conducted to develop a forecasting model
based on mentioned indicators in Canada [16], Turkey [17], China [7], Laos [3], Chile [18]
and other.

From an AI methods perspective, waste management models include expert sys-
tems [19], fuzzy logic [20], genetic [21], neuro-evolutional methods [22], artificial neural
networks [8,23], Bayesian algorithms, regression models [24], and other methods [25]. The
application of various methods for the development of forecasting models is presented in
Figure 1 [26]. As can be seen, most of the studies have been carried out using the Singe
Regression Analysis (SRA) approach, however, ANN, FL, and Multiple Regression Analysis
(MRA) and are also quite commonly used.
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It can be noted that ANN-based models in the case of MSW management are used
from different perspectives: ro analyze MSW related data [27] or capture disposal trend [28],
to develop predictive models together with other machine learning (ML) or to optimization
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algorithms [29], deep learning approaches [30] for forecasting waste generation [31] and
classification tasks based on image recognition [32].

The same algorithms used to predict waste generation can be applied to a broader
range of waste problems, such as forecasting the waste-to-energy (WtE) recovery, for
the efficient use of energy resources for the regeneration of resources and for end-use
applications [33–35].

While landfills are the cheapest way to dispose of waste, they do not contribute to the
value chain. Unmaintained landfills are harmful, and a major environmental concern is
the release of methane gas, which significantly contributes to climate change. In the case
of Lithuania, the geological survey has identified more than 800 geographical locations
where mixed and municipal waste is stored, recycled, and otherwise treated in one way or
another, which makes the issue of landfill site management, maintenance, and utilization
of landfills of particular relevance to the country. Even though since 2016 there has been a
significant decrease in the amount of MSW taken to landfill and an increase in the amount
of energy produced by burning waste (see Figure 2), forecasting waste and its potential to
be used as secondary raw materials is still a challenging task in the country and requires
more detailed studies and experiments. Considering the total amount of energy generated,
the country is also showing progress, although by 2020 only ~10% of all waste was used
for energy production (since 2020, this number has reached 20.81%), ~55% recycled for
other purposes and the rest was either exported, reused, or burned (Figure 3). This study
attempts to provide a novel WtE forecasting solution based on the ANN method, by solving
the problem of municipal waste landfills and to assess its potential as a source of renewable
electricity. Socio-economic factors relevant to the Lithuanian municipality are included to
address the waste forecasting tasks.
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2. Materials and Methods
2.1. Model for Forecasting the Amount and Composition of MSW

MSW collected in Lithuania is in mixed condition and is composed of more than 70 dif-
ferent fractions. Each waste fraction, such as paper or textiles, has its own identification
code. Administrators of waste landfills have to register the total amount of MSW that is
collected in landfill and monitor the composition of waste. An objective evaluation of the
waste composition is difficult task that requires manual labor, especially when wastes are
examined in landfills. Due this fact, not all waste fractions are correctly identified and
registered in the set of historical data. Missing data can negatively affect the forecasting
accuracy of energy recovery potential. We are proposing hybrid forecasting model that
employs not only historical data of an individual fraction but also socio-economic factors
when historical data is missing. The functional diagram of the proposed energy recovery
concept is presented in the Figure 4. Proposed hybrid methods consist of 3 main mod-
els: (1) socio-economic factors based fore-casting model (see Figure 5), time series-based
forecasting model (see Figure 6) and energy recovery model (see Figure 7). The first two
models are used to forecast the amount of specific waste materials (individual fractions
No. X) that can be used for energy recovery. The last model uses output of first models to
forecast the potential amount of recovered energy. The number of individual fractions is
forecasted using two different models, where the output for the energy recovery model is
selected from the model that has a sufficient amount of input data.
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The calculated correlation coefficients (Equation (1)) between the amount of landfill
waste and socio-economic factors in the selected region show that the most significant
factors are GDP, GDP per capita, immigration and population. The correlation coefficients
for the two landfills in the country, namely Aukstrakiai and Takniskes, are presented in Table 1.
The largest correlation has been observed between GDP, GDP per capita, population,
emigration and immigration, while the smallest between employment indicators.

In cases where accurate forecasting cannot be achieved based on historical data, the
dynamics of socio-economic factors that correlate with certain waste fraction are used for
forecasting purposes. The two concepts of the model, one based on socio-economic factors
and the other based on historical data, are illustrated in Figures 5 and 6, respectively.
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Table 1. Correlation coefficients between the amount of landfill waste and socio-economic factors.

Social-Economic Factors in the Region
Waste Amount in the Landfill

Siauliai Region
Aukstrakiai Landfill

Alytus Region
Takniskiu Landfill

Total amount of waste in Lithuanian landfills, tonnes r = 0.36 r = 0.47
GDP, thousands Eur r = −0.58 r = −0.73
GDP per capita, thousands Eur r = −0.59 r = −0.69
Emigration, thousands r = 0.49 r = 0.70
Immigration thousands r = −0.57 r = −0.61
Employment, % r = −0.06 r = −0.03
Unemployment, % r = −0.08 r = −0.11
Population in the region, thousands r = 0.856 r = 0.884
Research and development (R&D) per capita, Eur r = −0.25 r = −0.33

Feed-forward multi-layer perceptron ANN type [36] is selected in the research that
has the structure of on one input layer, two hidden layers, and an output layer of neurons
(Figure 5). ANNs are efficient data-driven modelling tool that is best for nonlinear systems
dynamic modeling, forecasting and identification. The ANN’s generalization capabilities
and flexible structure allows for the detection and classification of complex nonlinear
behavior. The forecasting of the total volume, composition and energy recovery of waste is
carried out using regression-based artificial neural network algorithms. The concept of the
model for assessing the feasibility of recovering resources from landfills is based on the
application of the best forecasting model. The size and complexity of the ANN structure is
determined experimentally, taking into account the forecasting error of the model.

Model inputs are historical data on the most correlated socio-economic indicators
and historical waste collection volumes for the selected region of the country. In order to
obtain the output value y(t) representing the forecasted value of waste amount, the model
must estimate the change in GDP

[
x1(t−3), x1(t−2), x1(t−1)

]
, the change in the population[

x2(t−3), x2(t−2), x2(t−1)

]
and the change in waste amount

[
x3(t−3), x3(t−2), x3(t−1)

]
in

time intervals [t− 3, t− 2, t− 1]. Thus, such an artificial neural network has 9 input signals
and 1 output signal.

The proposed concept is applied not only for the forecasting of total amount of waste,
but also for each waste fraction, such as paper, plastic, wood, textile, bio-waste and others
that can be found in MSW. An independent forecasting ANN model is used for each
fraction, where the outputs of the models are used to estimate the potential amount of
energy that can be recovered from the waste.
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Figure 6 shows the concept of forecasting model that is based on the historical data.
The recorded amount of each fraction expressed in tons are used as the input to the model.
The structure (e.g., the number of inputs) and complexity (e.g., the number of neurons in
hidden layers) of the ANN-based model depends on forecasting error of the waste fraction.

The general concept of an energy potential estimation is shown in the Figure 6. Pre-
sented energy estimation method is limited to the 7 types of waste fractions but can be
extended to any number required. This research uses 7 types of waste fractions expressed
in tons, such as biologically degradable wastes β, paper wastes η, plastics and composites
λ, metal wastes µ, glass wastes ρ, other not flammable wastes σ and δ.

The fit of the ANN based model was evaluated by calculating coefficient of determina-
tion and prediction error [37].

It is reasonable to calculate correlation coefficients r, those provide the strength of
the linear relationship between two features. Pearson correlation coefficients values vary
between −1 and 1, whereas if r = 0, then the variables have no relation; the closer the
coefficient is to +1 or −1, the stronger the relationship. Signs indicate if the relationship is
positive or negative, for example if r = 1, then two features have perfect positive relation:

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(1)

where value xi − x variable samples, yi − y variables sample, x—mean of values in x
variable, y—mean of values in y variable.

Mean absolute error (MSE) is a measure representing the average of the squared
difference between the real and predicted values in the data set. RMSE is just the square
root of the mean square error, the only difference that MSE measures the variance of the
residuals, while RMSE standard deviation of residuals. Value of RMSE and MSE penalize
large errors. In contrast, mean absolute error (MAE) is less biased for higher values and
usually doesn’t penalize large errors. MAE is calculated according to the following formula:

MAE =
1
n

n

∑
t=1
|yt − ŷt| (2)

where n—number of time point, yt—is the actual value at a given time period t, and ŷt is
the predicted value.

The mean absolute percentage error (MAPE) is a measure of the accuracy of a forecast-
ing system. MAPE is one of the most commonly used metrics to measure forecast accuracy,
because it expresses accuracy as a percentage of the error:

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (3)

where n—number of time point, yt—is the actual value at a given time period t, and ŷt is
the predicted value.

2.2. Municipal Solid Waste to Energy

Mixed municipal wastes can be grouped into two groups, such as combustible and
non-combustible fractions. Non-combustible fractions are converted into slags and ashes
during the combustions process, while combustible wastes (or materials) are oxidized to
gaseous materials. Not all waste is suitable for the thermal energy production as it may
have high level of humidity or be insufficiently thermal to maintain combustion process
(there is a need for additives, which helps to maintain proper combustion process). The
minimal calorific value of the waste cannot be lower than 6500 MJ/kg. The waste that has
lower colorific values does not maintain the proper combustion process without added fuel.

MSW contains a lot of fractions, which has high calorific values. For example, paper,
textile, plastic, and wood wastes have high calorific values. Caloricity depends on the
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amount of the chemical elements which can be found in the wastes, such as coal (C),
hydrogen (H), oxygen (O), water (W), nitrogen (N), and sulfur (S). Table 2 shows the ranges
of calorific values (megajoule per kilogram (MJ/kg)) for all waste fractions selected for the
study, as different sources give different values [38–40].

Table 2. Caloricity of waste fraction MJ/kg.

Waste Fraction Calorific Value, MJ/kg

Paper [9.3 . . . 15.0]
Plastic [18.2 . . . 45.7]

Plastic packages [15.3 . . . 28.4]
Bio-wastes [2.0 . . . 28.4]

Glass [−0.2 . . .− 0.1]
Metal [−0.3 . . .− 0.1]
Wood [9.0 . . . 18.4]

Textile, rubber, synthetic leather [6.9 . . . 32.9]
Other wastes (including mineral waste) [4.0 . . . 12.2]

Composites [13.3 . . . 18.5]
Composite packages [16.2 . . . 16.2]

The caloricity value of the individual waste fraction can be estimated using Equa-
tion (4), which takes into account chemical components of the waste fraction [41]. This
value is the sum of the product of the calorific coefficients of the chemical components
multiplied by the amount of the component in the waste [42].

Hu = 0.34·C + 1.016·H + 0.063·N + 0.191·S− 0.098·O− 0.025·W (4)

where Hu—caloricity of the wastes (MJ/kg); C—the amount of coal in the wastes %; H—the
amount of hydrogen in the wastes %; N—the amount of nitrogen in the wastes %; O—the
amount of oxygen in the wastes %; W—the amount of water in the wastes %; S—the amount
of sulfur in the wastes %. Total caloricity of MSW is estimated taking into the account the
amount of individual waste fraction (Equation (5)).

HuB = βHuβ + ηHuη + λHuλ + µHuµ + ρHuρ + σHuσ + δHuδ, (5)

where HuB—total caloricity of MSW (MJ/kg); Huβ—the caloricity of bio-wastes fraction
(MJ/kg); β—the amount of bio-wastes in MSW %; Huη—the caloricity of paper wastes
(MJ/kg); η—the amount of paper fraction in the MSW %; Huλ—the caloricity of plastic
and composites wastes (MJ/kg); λ—the amount of plastics and composites in MSW %;
Huµ—the caloricity of metal wastes (MJ/kg); µ—the amount of metal wastes in MSW %;
Huρ—the caloricity of glass wastes (MJ/kg); ρ—the amount of glass wastes in MSW %;
Huσ—the caloricity of other non-combustible wastes (MJ/kg); σ—the amount of other non-
combustible wastes in MSW %; Huδ—the caloricity of other combustible wastes (MJ/kg);
δ—the amount of other combustible wastes in MSW %. Due lack of data about the generated
number of individual types of plastic waste, we assumed that the fractions such as plastic,
plastic packages, composites and composite packages can be used as one fraction type,
called “plastic and composites”. The average caloricity value of these fractions (see Table 2)
is used in the Formula (5).

3. Results
3.1. Estimation of Raw Material Recovery Potential Based-on the MSW Trends

Figure 8 represent forecasting results of total amount of waste collected in Lapes landfill.
The predicted waste value is obtained using a model different number of inputs in the
range [6–15] (see Table 3). Performance indexes MAPE and r correspond to evaluation
results with testing data, and performance indexes MAPEV and rV correspond to valida-
tion data set. The vertical axis shows the amount of waste in kilograms and the horizontal
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axis shows the time in months since 2007. The results in the Table 3 show that the best
forecasting result varies considering two evaluation metrics: MAPE and Pearson correlation
coefficient r. The best accuracy result being achieved when the number of inputs equals 12
(MAPE = 6.89%, R2 = 0.66) and worst when the number of inputs equals 6.
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Figure 8. Total amount of wastes collected in the Lapes landfill: (a) the biggest forecasting error
(MAPE = 27.15%) and (b) the case of the smallest forecasting error (MAPE = 6.89%).

Table 3. Forecasting results (testing and validation) of total waste amount for Lapes and Aukstrakiai
landfills using varying number of inputs.

Lapes Lanfill

Metrics
Number of Inputs

6 7 8 9 10 11 12 13 14 15

MAPE 27.15% 23.10% 18.33% 8.62% 21.49% 16.99% 6.89% 7.78% 10.31% 8.85%
MAPEV 26.50% 22.80% 17.20% 7.25% 20.78% 14.90% 5.73% 6.89% 9.80% 7.36%

r −0.62 −0.52 −0.28 0.51 −0.41 −0.02 0.66 0.63 0.15 0.49
rV −0.65 −0.58 −0.31 0.61 −0.45 −0.01 0.71 0.65 0.17 0.53

Aukstrakiai landfill

MAPE 40.30% 29.19% 13.37% 11.07% 31.39% 10.01% 10.11% 11.49% 11.20% 12.06%
MAPEV 39.20% 28.32% 11.80% 9.50% 28.50% 8.25% 8.95% 10.62% 10.45% 11.80%

r 0.17 0.51 0.78 0.86 0.37 0.85 0.91 0.82 0.84 0.81
rV 0.19 0.54 0.81 0.91 0.42 0.87 0.95 0.84 0.87 0.85

Figure 9 represent forecasting results of total amount of waste collected in Aukstrakiai
landfill. In the case of Aukstrakiai landfill, forecasting model with 11 inputs demonstrated
the best accuracy, where MAPE = 10.1%, however, correlation coefficient r = 0.91 is
obtained using 12 inputs. To forecast the total amount of waste, it is best to use a model
with 11 inputs that evaluates the historical 11-month waste collection values. As in the case
of Lapes landfill, the largest prediction error for Aukstrakiai landfill is obtained when the
number of inputs is 6 (MAPE = 40.3%).

The predictability of the future amount of generated waste can be evaluated using
autocorrelation function. Autocorrelation function is a mathematical representation of the
similarity degree between a two-time series signal, where one is lagged version of itself
over successive time intervals [43]. This function is similar to the correlation between
two different time series, but autocorrelation uses the same time series twice, for example
original form and lagged form. Autocorrelation measures the relationship between a
variable’s current values and its past values (historical data). This function varies between
positive 1 and negative 1, where +1 represents positive correlation, 0—represents no
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correlation and −1 demonstrates negative correlation. We used autocorrelation function to
measure how much influence past amount values of MSW has for future amounts of MSW.
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Figure 9. Total amount of wastes collected in the Aukstrakiai landfill: (a) the biggest forecasting error
(MAPE = 40.03%) and (b) the case of the smallest forecasting error (MAPE = 10.01%).

The autocorrelation function of the total MSW of Lapes landfill is shown in Figure 10
(right) and Aukstrakiai landfill (left). The timeline is represented on horizontal axis and the
autocorrelation values are given on the vertical axis.
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Two autocorrelation functions demonstrate different nonlinear behavior in analyzed
data. The autocorrelation estimated from Aukstrakiai landfill dataset shows high predictabil-
ity potential because the lagged version of the dataset has high correlation values with
original data set. However, the Lapes landfill dataset has more complex behavior because
autocorrelation values are small and demonstrates low similarity between original dataset
and lagged version of itself.

3.2. Accuracy of Energy Forecasting

We planned to divert high-calorific fractions to energy production by burning them.
The potential of the energy recovery of the waste is evaluated using limited number of
waste fractions. The limitation of waste fraction simplifies estimations and allows to make
clear conclusions about proposed forecasting concept. This research includes “plastics
and composites” (caloricity 20.6 MJ/kg), “glass wastes” (caloricity −0.1 MJ/kg), “textile”
(caloricity 8.5 MJ/kg), “wood wastes” (caloricity 14.7 MJ/kg). The potential total caloricity
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Hcommon of selected waste fractions are estimated using Formula (5). The energy that can be
potentially recovered from the MSW is estimated using Equation (6):

ENER = Hcommon·W·1000·
(

0, 278
106

)
, (6)

where ENER—the amount recovered energy (GWh/y), W—the number of combusted
wastes (tonnes/y) ir Hcommon—total caloricity of waste fractions (MJ/kg).

The potential amount of energy obtained by estimating real historical data is shown in
Figure 11. The highest amount of energy 773.20 GWh/y was recovered in 2016, the lowest
0.25 GWh/y was recovered in 2007. The sudden increase in the amount of energy recovery
in 2016 is due to the unprecedented collection increase in plastics and composites in waste.

Table 4 represents forecasted values of the recovered energy using 5 different fore-
casting models. The forecasted energy values are presented on the vertical axis (GWh/y)
and the timeline is presented on the horizontal axis. Time axis begins from 2007 and ends
with year 2020. The forecasted energy values of different models are shown with different
color. Forecasted energy values is strongly correlated with estimated real energy values.
All models predicted that the recovery of the energy is likely to strongly grow in 2016 due
to increased collection of the plastics and composites fraction.

Table 4. Forecasted energy values in Lithuania from 2007 to 2020.

Year Real Value,
GWh/y

Forecasted Energy Values, GWh/y

5 Inputs 6 Inputs 7 Inputs 8 Inputs 9 Inputs 10 Inputs 11 Inputs 12 Inputs

1 January 2007 0.25 0.92 0.66 0.71 0.60 0.53 0.77 0.70 0.66
1 January 2008 0.70 1.12 0.79 0.89 0.78 1.05 0.99 0.95 0.94
1 January 2009 1.47 3.36 2.28 2.78 2.35 2.90 2.99 2.33 2.29
1 January 2010 2.33 2.59 2.79 2.90 1.94 2.12 2.75 1.98 2.21
1 January 2011 2.09 2.81 2.40 2.71 2.33 2.52 2.60 2.45 2.33
1 January 2012 3.14 3.52 3.12 3.92 2.93 3.18 3.55 3.28 3.22
1 January 2013 6.84 7.02 6.53 6.92 5.95 5.35 6.37 6.12 6.52
1 January 2014 7.86 8.58 9.19 8.75 8.11 9.13 8.20 8.11 8.64
1 January 2015 4.86 5.11 5.98 6.54 6.20 6.78 6.62 6.36 5.96
1 January 2016 773.20 602.52 762.76 635.31 754.06 642.26 644.89 712.58 709.93
1 January 2017 94.13 170.94 141.41 93.82 161.22 141.17 153.96 132.79 124.87
1 January 2018 105.80 121.03 90.16 100.46 118.21 96.41 93.03 109.93 112.15
1 January 2019 117.14 90.23 107.39 110.51 118.21 115.58 114.65 112.43 113.25
1 January 2020 105.81 89.40 82.67 73.48 92.68 90.83 81.79 90.69 88.34

MAE 22.25 7.936 13.506 8.391 15.095 16.69 9.151429 8.987857

MAPE 49.1% 29.2% 31.8% 27.8% 32.8% 40.9% 30.5% 17.1%

The best forecasting results were achieved using models with 6 inputs (6 last months)
for each waste fraction, such as model for “plastic and composites”, model for “paper
wastes” and etc. The model with 6 inputs reached MAE = 7.936 GWh/y. The highest MAE
value 16.69 GWh/y were reached using forecasting models with 10 inputs.

All experiments with the ANN model were implemented in Python and run on a PC
(Dell Allienware) with NVidia GeForce GTX 980 M with 4 GB GDDR5 graphics and 4 GB
of GDDR5 standard memory.
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4. Discussion

The accurate estimation and forecasting of energy recovery potential strongly depends
on the correctness of the recorded data about collected MSW and its composition. Our
research work has demonstrated that, in the case when there are missing, data in historical
set socio-economic factors can be used for prediction of an amount of the waste and
individual waste fraction. Additionally, our findings show that collection behavior of
individual waste fractions varies from one landfill to another, and it differs between
fractions (Figure 12). The amount and generation intensity of particular waste fraction
depends on geographical location of the landfill and seasonality (national holidays etc.).
We noticed that the usage of one type of the forecasting model with fixed amount of inputs
gives lower forecasting accuracy than those with flexible number of inputs. The global
optimum is obtained by calculating minimal value of performance measure MAPE.

Accurate forecasting of MSW can also lead to a more accurate prediction of the percent-
age composition values of the landfill waste. To show the superiority of our method, the
comparison table presented below includes forecasting results (waste fraction percentage
values for Alytus Tankiskiu landfill) gained using different methods (Table 5). Actual values
are acquired during the landfill drilling process, assessing the composition of the buckets.
It can be observed that the autoregressive integrated moving average (ARIMA) model [44]
produces large errors (in terms of MAE) when compared to the linear regression model and
our proposed ANN model, which produces a significant smaller error, with a mean value
of 3.368%. Using our model, the prognosis for the next year (2021–2022) is also provided.

Upcoming research studies will involve development of ANN-based forecasting model
that can automatically adapt to the complexity of the given data set (collection variability
of individual waste fraction) by adjusting the right number of inputs.
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Figure 12. Forecasting MAPE value of the prediction model for different waste types (a) Mixed con-
struction and demolition waste, (b) Construction waste, (c) other wastes from mechanical treatment, 
(d) Garment waste, e) Ruber waste, (f) Other non-biodegradable waste, g) secondary raw materials 
and (h) Textile waste at Lappe landfill using different number of inputs. 
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Figure 12. Forecasting MAPE value of the prediction model for different waste types (a) Mixed con-
struction and demolition waste, (b) Construction waste, (c) other wastes from mechanical treatment,
(d) Garment waste, (e) Ruber waste, (f) Other non-biodegradable waste, (g) secondary raw materials
and (h) Textile waste at Lappe landfill using different number of inputs.
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Table 5. Comparison of landfill composition values forecasted using different methods, including
future forecasting for 2021–2022 years.

Fraction

Actual Values, % Forecasted Values, %

Waste Composition, %
(Morphological Analysis)

ARIMA
Model [31]

Regression
Model

ANN + Waste
Degradation

ANN
2021–2022

Paper 0.96 11.03 2.71 2.254 1.866
Glass 0.25 7.23 2.05 0.485 0.351
Metal 3.6 2.44 0.85 1.537 1.932
Plastic 21.36 9.56 4.26 5.637 4.025
Dangerous waste 0.06 3.35 0.1 0.022 0
Other non-combustible waste 2.46 30.26 5.41 4.49 3.772
Other combustible wastes 24.62 14.55 46.66 25.86 27.051
Fine fraction 46.23 13.56 None 43.088 42.176
Wood 0.46 0 1.48 0.43 0.496
Textile 24.62 0 4.7 16.736 18.931
Average MAE 12.892 7.708 3.368

5. Conclusions

In this study, a model based on artificial neural networks has been proposed, with
several inputs adapted to the relevant waste fraction and to the specific landfill, taking into
account the accuracy and the estimation range. The experimental results have shown that
a model consisting of 12 inputs (months) is the most rational to forecast the total amount
of waste in the Lapes landfill (MAPE = 6.89, r = 0.66). In the case Aukstrakiai landfill, the
model with 11 inputs was the most accurate in terms of MAPE = 10.01%. In order to obtain
the most accurate forecast possible, it is recommended to develop region-specific model for
waste forecasting. For the prediction of waste composition, separate forecasting models
were developed for each fraction of waste at different landfills. Different forecasting models
demonstrated different results. Some models required less historical data, while others
required more data to predict future values with confidence and accuracy. The minimum
amount of data required for a rational forecasting of waste composition is the last 8 months
of data.

Concerning the recovered energy forecasting task, it was found that the most accurate
predictive model is the one with 12 inputs, being the model that takes into account the last
12 months of data to estimate the future value. The model of such a structure has achieved
the highest forecasting results for the period from 2007 to 2020 (MAPE = 17.1%) compared
to models with a smaller number of inputs. A total of 1225 GWh/y of energy could have
been recovered during this period. The predictive values for the following years (both in
terms of waste composition and energy recovery potential) will be verified by excavation
and drilling of the landfill sites, which will allow the proposed hybrid model to be refined
in accordance with the errors obtained.
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