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Subarachnoid hemorrhage (SAH) is one of the major health issues known to society and has a higher mortality rate. The clinical
factors with computed tomography (CT), magnetic resonance image (MRI), and electroencephalography (EEG) data were used to
evaluate the performance of the developed method. In this paper, various methods such as statistical analysis, logistic regression,
machine learning, and deep learning methods were used in the prediction and detection of SAH which are reviewed. The
advantages and limitations of SAH prediction and risk assessment methods are also being reviewed. Most of the existing
methods were evaluated on the collected dataset for the SAH prediction. In some researches, deep learning methods were
applied, which resulted in higher performance in the prediction process. EEG data were applied in the existing methods for the
prediction process, and these methods demonstrated higher performance. However, the existing methods have the limitations
of overfitting problems, imbalance data problems, and lower efficiency in feature analysis. The artificial neural network (ANN)
and support vector machine (SVM) methods have been applied for the prediction process, and considerably higher

performance is achieved by using this method.

1. Introduction

Acute brain injuries are very serious health issues that
require early care for effective treatment of the patient.
Advancements in neurosurgical and critical care techniques
help to increase the survival rate [1, 2]. The functional out-
comes of an individual suffering from such injuries are very
fatal and lead to secondary complications such as seizures,
inflammation, and brain swelling, most of which are poten-
tially amenable if proper therapy is used for treatment [3, 4].
Subarachnoid aneurysmal hemorrhage (SAH) is a brain-
related injury and is considered a major health issue among
the many existing ones in society. The SAH occurs 9.1 per
100000 people annually worldwide, and studies from Japan
and Finland have 22.7 and 19.7, respectively [5]. Detection,
prevention, and the clinical management of these secondary
complications are large burden for the health care centers
dealing with SAH patients [6, 7]. Among aneurysmal SAH
(aSAH), the delayed cerebral ischemia (DCI) is the major
cause of mortality [8, 9]. For suspected SAH patients, com-

puted tomography (CT) is the preferred method for imaging
due to its wide availability and high sensitivity [10, 11]. Mag-
netic resonance imaging (MRI) is considered equally or
more sensitive than CT for acute or subacute SAH detection
[12]. Electroencephalography (EEG) signal provides infor-
mation about the cortical activity in the brain [13]. Fast
activity depression and rhythms slowing changes EEG sig-
nals when insufficient cortical perfusion compromised the
neuronal function [14]. EEG signals are applied in some
researches, for the detection of DCI at an early stage [15-17].

Early diagnosis and treatment of SAH patients are
important to ensure optimal cerebral blood flow and will
also potentially improve the long-term outcome of patient’s
health [18, 19]. Some researchers are considering that
changes in heart rate variability (HRV) with clinical events
provide relevant features for prediction [20, 21]. Large cere-
bral artery vasospasm is associated with the risk of DCI and
SAH, but vasospasm cannot be considered as a strong factor
for predicting DCI [22, 23]. The aSAH patient’s clinical fea-
tures such as heart rate, blood pressures, intracranial


https://orcid.org/0000-0003-2325-855X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5416726

pressures (ICP) [24], glucose and sodium values [25], and
drainage volumes of cerebrospinal fluid (CSF) [26] were
monitored and not applied for the prediction of SAH and
symptoms of SAH. Reliable prediction of aSAH is based on
various factors that act as a support system for resource allo-
cation and treatment decisions. Clinical scoring systems and
radiography help in the estimation of disease severity, and
predictive value is limited in devising treatment strategies
[27, 28]. Machine learning and deep learning methods were
applied for the prediction of SAH and DCI for the effective
treatment of the patients [29, 30]. In this paper, prediction
models such as statistical analysis, machine learning, and
deep learning models that are used for SAH prediction are
reviewed along with each model's advantages and
limitations.

The organization of this paper is given as follows: a
review of various prediction models of SAH with statistical
analysis, logistic regression, machine learning, and deep
learning models are reviewed in Section 2, and comparative
analysis of various models in SAH is given in Section 3, and
a conclusion is given in Section 4.

2. Review of SAH Prediction Models

The SAH prediction model involves the application of
machine learning or statistical method applied in clinical
factors, CT, MRI, and EEG data. In this review, the statistical
method, machine learning, and deep learning method
applied for the clinical factors for SAH prediction were
reviewed. Generally, prediction of SAH involves in dataset
collection and application of the classifier to assess the risk
or predict the SAH. Some of the researches involve in apply-
ing the medical images like CT, MRI, EEG signal, and clini-
cal factors for the SAH prediction. Statistical analysis and
regression were also used for the risk assessment in the
SAH prediction. Some of the standard machine learning
techniques such as SVM, RF, and ANN were applied for
the prediction of SAH. Machine learning methods involve
in learning the features with its label in training process.
For instances, random forest method involves in develop-
ment of the tree based on the given features in training
and in testing; test data is applied in the tree structure to per-
form classification. Deep learning method is subpart of
machine learning techniques that performs unsupervised
classifier based on deep feature learning. Deep learning
method like CNN-based model learns the features in the
neurons without its label in the training process. The over-
view of the model is shown in Figure 1.

2.1. Prediction Models. Various prediction models that were
based on machine learning methods were applied for the
early detection of SAH.

Steen et al. [31] carried out the statistical analysis based
on the various clinical factors related to the patient. The
Fisher model is used to evaluate the performance of the sta-
tistical model, and this shows statistical model has consider-
able efficiency in the analysis. The statistical method has
lower efficiency in the feature analysis. Nassar et al. [32]
applied statistical methods for the detection and prediction
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of the SAH. The Fisher and Monte Carlo method was used
to evaluate the performance of the model. The EEG and
CT data of 46 patients were used to evaluate the perfor-
mance of the developed model. The feature analysis and fea-
ture relation analysis are not efficient in the model. The
statistical methods consider the features in linear relation
with output factor, and the model does not learn from the
input data. Zeiler et al. [33] applied statistical analysis based
on the Full Outline of UnResponsiveness (FOUR) measure
for prediction of SAH. The collected data was used to evalu-
ate the performance of the developed method. The evalua-
tion shows that the developed method has considerable
performance. The developed method has lower efficiency
in feature analysis and feature relation analysis. Malinova
et al. [34] applied statistical analysis in the CT images to pre-
dict the SAH. The CT perfusion data were used to evaluate
the performance of the developed statistical model. The
developed model has considerable performance in the pre-
diction process based on CT perfusion features. The devel-
oped method has lower efficiency in the feature analysis
and feature relation analysis.

Kanazawa et al. [35] applied the Synapse Vincent soft-
ware program for the prediction of SAH based on CT
images. The texture features of CT and features such as
mean CT value, kurtosis, and skewness were used in this
prediction. The developed method showed considerable per-
formance in the prediction of SAH. The texture features of
the CT were not effectively detected in the model and lower
performance in feature analysis. Park et al. [36] applied a
statistical method for the prediction of SAH based on the
clinical features of the patient data. The dataset of 418
patients was used to evaluate the performance of the model.
The model achieved considerable performance in the predic-
tion process of SAH. The feature analysis and feature rela-
tion analysis of clinical factors were not efficiently
implemented in the model. Yan et al. [37] applied a multi-
variable logistic regression model with various clinical fea-
tures for the prediction of SAH. The least absolute
shrinkage and selection operator (LASSO) was used to select
the predictive risk factors for patients with aSAH. The selec-
tion operator regression and least absolute shrinkage were
applied to optimize the factor selection for the poor recovery
risk model. The overfitting problem occurred in the model
that affected the performance of the developed model.

Fang et al. [38] applied a statistical method for the pre-
diction of SAH based on the modified Fisher scale. The col-
lected data were used to evaluate the performance of the
developed method in prediction. The analysis shows that
the developed method has considerable performance in the
analysis. Liu et al. [39] applied multivariate logistic regres-
sion for the prediction of SAH and analyzed independent
risk factors. The model has considerable performance in
the prediction process. The feature analysis and the feature
relation analysis based on clinical factors are not efficiently
implemented in the model. Lublinsky et al. [40] applied
the logistic regression method for the prediction of SAH.
The model has considerable performance in the prediction
of SAH in the analysis. The logistic regression model is not
stable and has lower efficiency in the prediction of SAH.
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FIGURE 1: The overview of the SAH prediction model.

Geraghty et al. [41] applied the logistic regression method
for the prediction of the SAH in the patient data. The clinical
factors were applied for the prediction of SAH in the devel-
oped method. The logistic regression has unstable perfor-
mance, and overfitting problem had occurred in the
prediction process.

2.2. Prediction Model Based on Machine Learning
Techniques. Machine learning techniques demonstrate effi-
cient performance in prediction, detection, and classification
processes. The machine learning models were applied in the
CT, MRI and EEG data for the prediction of SAH.

Rau et al. [42] applied the Classification And Regression
Tree (CART) method for the prediction of SAH based on
the Gini Index. The dataset with 545 patient data was used
to evaluate the performance of the CART method. The
CART method has considerable performance in the predic-
tion process. The decision tree model is unstable and ineffi-
cient in the prediction process of SAH. Malik et al. [43]
proposed a knowledge graph model for concept extraction,
individual and relational feature analysis, and prediction
process. Ensemble learning method based on skip-gram
technique was applied to handle structured and unstruc-
tured data of patient records. The knowledge graph method
showed higher performance in the feature analysis and pre-
diction process of SAH. The developed model had lower effi-
ciency due to an imbalance dataset and overfitting problem
in the analysis. Kim et al. [44] applied convolutional neural
network (CNN) for digital subtracting angiography. The col-
lected dataset was applied to evaluate the performance of
CNN in risk assessment. The developed model showed con-
siderable performance in the prediction process. The overfit-
ting problem in the CNN model affects the performance of
the model.

Chen et al. [45] applied machine learning techniques in
IoT for the diagnosis of a human brain hemorrhage. The
feedforward neural network and support vector machine
methods are applied for the CT dataset. The feedforward
neural network achieved higher performance in the detec-
tion method. The support vector machine had lower effi-

ciency in the detection method due to the data imbalance
problem. Liu et al. [46] applied the SVM method with uni-
variate and multivariate analysis for the prediction of hem-
orrhage based on CT data of patients. The collected data
was used to evaluate the performance of the developed
method. The analysis showed that the developed method
has higher performance in the prediction of hemorrhage.
The SVM method is lesser efficient due to the imbalance
dataset. Govindarajan et al. [47] applied machine learning
methods such as support vector machine, random forest,
artificial neural network (ANN), boosting, and bagging for
the prediction process. The artificial neural network with
the stochastic gradient method achieved higher performance
in the analysis. The developed method has an overfitting
problem and lower efficiency in the imbalance dataset.

Zhu et al. [48] applied feed-forwarded ANN, SVM, and
random forest with clinical and morphological features in
the prediction model. The analysis of the prediction model’s
outcome shows that machine learning models have higher
performance than statistical analysis. The ANN model has
lower efficiency in the feature selection process for the pre-
diction of hemorrhage. Cho et al. [49] presented a cascade
deep learning method using two CNN models and dual fully
convolutional networks. The CNN method is applied for five
types of hemorrhages in the CT images. The CNN method
had the overfitting problem that affected the performance
of the method. Shahzad et al. [50] applied a deep learning
model for the prediction of SAH in CT images. The deep
learning methods with ensemble learning technique were
applied to analyze the performance of the prediction. The
deep learning method showed higher performance in the
prediction process.

Abujaber et al. [51] applied ANN and SVM method with
clinical factors on CT images for the prediction. The ANN
and SVM provide higher performance in the prediction pro-
cess, and the optimal accuracy in the prediction is achieved
by using SVM, but it proves to be less efficient while dealing
with an imbalance dataset. Ginat [52] applied a deep learn-
ing method for the analysis of hemorrhage in CT images.
The collected data was used to evaluate the performance of



the developed model in prediction. Hong et al. [53] applied
three machine learning techniques that are SVM, Naive
Bayes, and random forest for the detection of hemorrhagic
brain. ReliefF feature selection method was applied to select
the relevant features. The random forest achieved higher
performance compared to other methods. Random forest is
inefficient when a number of a tree is a high and overfitting
problem when a number of trees are less.

Barros et al. [54] applied CNN for the detection and pre-
diction of SAH in the noncontrast CT images. The collected
data were used to evaluate the performance of the SAH pre-
diction performance. The developed model showed higher
performance in the segmentation and prediction. The
CNN has an overfitting problem that affects the perfor-
mance of the prediction method. Nawabi et al. [55] applied
random forest with filter and texture-derived features for
the prediction process. The developed method with the
selected features achieved higher performance in the
analysis.

Some methods follow the random forest method for the
prediction process but the random forest method has the
limitation of inefficient and overfitting in the training.

Claassen et al. [1] developed an Ensemble RF Algorithm
for analyzing big data. As the dataset is imbalanced due to
the missing features of business data and many more, rea-
sons were noticed. Thus, the classification algorithms such
as SVM and logistic regression algorithm faced difficulty to
model the insurance business data. The developed model
exploited a heuristic bootstrap sampling technique that
combined the ensemble learning model for large-scale insur-
ance business data. The developed model introduced an
ensemble approach that performs computation tasks and
optimized memory cache using spark mechanism. The
ensemble approach combined the bootstrap sampling pro-
cess that reduced the learning process and showed better ref-
erence for remaining imbalanced data mining algorithms.
The developed ensemble approach has analyzed the big data
and was applied for IoT, mobile Internet, and finance things.
However, the developed model further works including
exploration of proposed algorithm with distinct big data
analytics such as combining with deep learning model
improves the prediction accuracy based on big data.

Fang et al. [4] utilized a RF approach for modelling the
behavior for travel mode choice. The decision tree (DT) dec-
orrelates in ensemble through randomization leading to
improvement to forecast which reduces the variances. These
were averaged over the trees, and the RF usefulness to travel
mode choice behavior largely remained as unexplored. The
developed model introduced a robustly approaching RF
model that analyzed for travelling mode choices which
examined the capability during model prediction and inter-
preted the model ability. The results obtained by the devel-
oped model showed that the RF model performed better
measures significantly better with travel model choice pre-
diction for obtaining accuracy better and with computation
cost of less. Also, the developed model estimated that the
explanatory variables showed relatively importance better
and was related for mode choices. There are many benefits
based on the machine learning behavioral interpretation
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which showed difficulty because of the complexity in the
number of parameters of the system. The machine learning
models performed research and rapidly showed intersection
of statistical analysis, and information science discovered the
complex patterns present on the datasets. The emphasis on
theoretical and application investigation with respect to the
present dataset showed improvement based on analytical
techniques. These machine learning techniques were utilized
in order to perform relevant, statistical, and probability the-
ory for analyzing the econometric data which were still to be
analyzed for travel behavior analysis. The random forest
architecture is shown in Figure 2.

Chimmula and Zhang [56] developed long-short-term
memory (LSTM) networks for time series forecasting for
COVID-19 data belonging to Canada. The public dataset
utilized was acquired at John Hopkins university from Cana-
dian health authority. The developed model performed fore-
casting model for the COVID data using deep learning
model. The key features were utilized for performing the
trend prediction and also to find out the possible stopping
time from that of the existing COVID data worldwide. The
developed LSTM model predicted the ending point for the
outbreak data and modeled the pandemic with respect to
the people who were travelling. The results showed that
the developed model obtained fruitful results as the current
trails on vaccines were achieved.

Kim and Cho [57] performed prediction of residential
energy consumption based on the CNN-LSTM models.
The electricity is generated by the power plant and is simul-
taneously consumed based on the stable power supply. The
CNN-LSTM extracted the temporal and spatial features for
predicting the energy consumption at the housing. The
results obtained from the experiment have showed that the
CNN-LSTM combined with CNN extracted the features
related to energy which were complex in nature. From the
CNN layer, the features extracted affected the energy con-
sumption, and LSTM model modeled the temporal informa-
tion. The information from the irregular trends were
extracted from the time series components. The proposed
CNN-LSTM model achieved prediction of performance with
respect to electric energy which showed difficulty previously.
The smallest value is recorded by evaluating the root mean
square error which showed better values when compared
with the conventional forecasting techniques from the data-
set showed household power consumption individually. The
model reflected large evaluation measures on the basis of
trial and error method determined hyperparameters opti-
mally. An automated searching found the best hyperpara-
meters using genetic algorithm during the process. The
developed model still required lots of houses for validating
the model for evaluating the collected energy and the con-
sumed energy data.

Park et al. [58] developed a LSTM-based battery for
Remaining Useful Life (RUL) prediction with the help mul-
tichannel charging profiles. The developed model estimated
RUL with the presence of capacity regeneration phenome-
non that considered a multiple measured data from a battery
managing system. The parameters such as current, tempera-
ture, and voltage were considered for charging the whole



BioMed Research International

F1GURE 2: Architecture of random forest.

Input layer

Output layer

F1GURE 3: Architecture of deep neural network (DNN).

FIGURE 4: Sample images of RSNA intracranial hemorrhage dataset.

pattern profiles that varied with respect to ages. The existing
LSTM traditional methods performed prediction that
matched the output and input layer with respect to one after
the other structure. The many to one structure showed flex-
ibility with respect to distinct input types which reduced
substantially the parameters that gave better process of gen-
eralization. The multichannel (MC) profiles were charged
and exploited with respect to current, temperature, and volt-
age that were necessary for RUL prediction accurate. The
developed MC-LSTM model showed better significance with
respect to the baseline of the EoL leading the batteries to uti-
lized better without declaring premature till the end of use.

Shahid et al. [59] performed classification using deep
learning models such as gated recurrent unit (GRU), bidirec-
tional long-short-term memory (Bi-LSTM), and LSTM
models. The developed model set up a strategic plan for
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TaBLE 1: Comparative analysis of the prediction methods used for detection of SAH.

Method

Dataset

Advantages

Limitations

Applied random kernels to
extract the features from
physiological time series features
[76].

Classifiers such as kernel SVM
and partial least square were
applied for prediction.

The model was evaluated on the
488 consecutive data from a
tertiary care hospital.

K-nearest neighbor (KNN) was
applied to impute the missing
data [77].

Classifiers such as deep learning,
gradient boosting machine,
gradient boosting machine, and
generalized linear modeling were
used.

The method was evaluated in 300
patient datasets.

Deep learning and Grapcut-based
segmentation were carried out for
segmentation of SAH [78].

The deep learning method is
applied for feature extraction,
and the softmax method is
applied for classification.

The Benchmark dataset was used
to evaluate the performance.

Correlation with the clinical and
radiologic findings are analyzed
in the model [79].

A linear mixture model is used to
evaluate the performance of the
method.

The dataset with 64 patient data
was used to evaluate the
performance.

Convolutional neural network
(CNN) model is applied for the
segmentation of SAH [80].
Voxel-wise segmentation was
used for the segmentation.

This model is evaluated on two
datasets, and performance is
analyzed.

A multilevel linear regression
model is applied for the relational
analysis of heart rate variability
(HRV) and SAH [81].

EEG data of SAH patients were
collected to evaluate the
performance of the model.

The elastic net logistic regression
model is applied for the
prediction of SAH [82].

EEG and clinical factors data

Dataset is collected from
Columbia University Medical
Center.

Dataset is collected from the
National Institute of Health
Stroke Scale.

Physionet benchmark dataset

Sahlgrenska University
Hospital, Gothenburg, Sweden

Collaborative European
neurotrauma effectiveness
research in TBI study

Columbia University Medical
Center Institutional Review
Board

Nonelective cEEG at Yale
University/Yale New Haven
Hospital, Brigham and

The evaluation shows that
random kernel and kernel SVM
has considerable performance in

the prediction.

The analysis shows that the
developed model has considerable
performance in the prediction.
The model has considerable
performance in a large dataset.

The deep learning and Grabcut
method have higher efficiency in
the segmentation.

The model has higher
performance in the benchmark
dataset.

This model has considerable
performance in the analysis.

The CNN has the higher
efficiency in the segmentation.
The model has the higher
performance in the analysis.

The model has a higher
performance in the feature
analysis.

The model has considerable
performance in the prediction.
This method effectively analyses
the EEG data.

The feature relations are not
effectively analyzed due to applied
kernel function and SVM has
lower performance in handling
imbalance dataset.

SVM requires more data
instances to develop the optimal
hyperplane.

KNN method computes the
distance between the new data
instance and the existing data

instance. The distance calculation
for high dimensions creates the
overfitting problem in training.

The overfitting problem has
affected the performance of the

model.

The convolution and upsampling
of data in the deep learning model
creates an overfitting problem.
The model has an overfitting
problem that affects the
performance.

The model has lower efficiency in
imbalance dataset due to model
requires more data instance for
the class to train.

The model has a lower efficiency
in analyzing the nonlinear
relation in the features.

The CNN model convolution and
pooling process create more data
for the training, and this creates
an overfitting problem. The
model has an overfitting problem
that affects the performance of the
model.

Relevant features were required to
be extracted to analyze the HRV,
and effective classifier is required
to analyze the relation between
HRYV and SAH.

The feature relations in EEG and
clinical factors are not effectively
analyzed.
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TaBLE 1: Continued.

Method Dataset Advantages Limitations
were used for the prediction. Women’s Hospital, or Emory

This model is evaluated in a large University Hospital

dataset to analyze the

performance.

Random forest with conditional

inferences trees were optimized
P The random forest-based model

to predict th.e SAH [83]', World Federation of has considerable performance in The ! andom forest model is

The feature importance is ical Societi ineffective when a number of trees

analyzed in this model Neurosurgical Societies the dataset. is more and has overfitting when
Y ) (WENS) The feature importance helps to

The dataset of 630 SAH patients
was used to evaluate the
performance of the model.

. . a number of trees is less.
improve efficiency.

The faster RCNN model
The faster recurrent convolution generates more data instance to
neural network (RCNN) model is train the network that creates an
applied for cerebral aneurysm overfitting problem. Overfitting

detection in CT images [84]. Dataset collected from three ~ The deep learning method has a problem affects the performance

- i . high f i ion.

The collected dataset is used to medical centers igher performance in detection of the model.

evaluate the performance of the The parameter selection process

model. requires for optimal performance
of a network.

Logistic regression model for

prediction of SAH and evaluated The nonlinear relation between

The evaluation shows that model

Massachusetts General has the considerable performance.

Hospital aSAH database The model has higher efficiency
in the feature analysis.

based on Glasgow Outcome Scale
(GOS) [85].

The collected SAH patient dataset
was used to evaluate the
performance.

the features of SAH is required for

analysis for effective performance.

The model has lower efficiency in
feature relation analysis.

Method: a multivariate logistic

regression model A multivariate logistic regression
Dataset: in-hospital model was developed to predict
Mortality in patients with sub the likelihood of in-hospital
arachnoid hemorrhage [86]. mortality, adjusting it exclusively
Variables relating to their for variables present on
demographic characteristics (age admission. A predictive equation
and sex), comorbidities (assessed of in-hospital mortality was then

Although a multicollinearity
analysis was performed, it cannot
be ruled out that this issue could

have influenced the associated
effect sizes and maybe the
associations themselves. Finally,
this study only represents the
clinical experience at our hospital,

Dataset collected from the
University Hospital Complex
of A Coruna (Spain).

by Charlson index), SAH computed based on model’s and so. our results must be
(delayed hospital arrival and coefficients, along with a point- 50, OUT Testl "
. . validated externally with an
symptomatology at onset), and based risk-scoring system. .
. independent cohort.
severity
The acute infarction area of First, the sample size is relatively

The developed DMTC model in
an independent external
validation set, and comparing it

diffusion-weighted imaging
(DWI) and hypoperfusion of

small. Finally, as a result of the
sample size, patients receiving

perfusion-weighted imaging Nanjing First Hospital and the . L bridging therapy were also
(PWI) was labeled manually. Affiliated Jiangning Hospital of Vg}t}cll:tteszrta;iggltghseeziilc):gla:rie ; enrolled, Health Quality Ontario
Two forms of datasets (volume of =~ Nanjing Medical University demonstrated that EVT did not

had good performance in
predicting HT, which showed
good generalization ability.

show an increased incidence of
clinically relevant HT in
comparison with IVT.

interest [VOI] data sets and slice
data sets) were analyzed,
respectively [87].

Multilayer perceptron (MLP), CT scan images of Charité
Naive Bayes, and SVM methods ~ Universitaetsmedizin Berlin The. developed method ha.s The developed model has the
. . considerable performance in .
were applied for the prediction were used to test the - imbalance data problem.
prediction process.
process [88]. performance.

The developed method has lower
performance in assumption of
linearity between dependent and
independent variables.

Logistic regression model is
applied for the prediction process
[89].

The developed method has
considerable performance in the
risk factor analysis.

Teaching hospital in Barcelona
(Spain)




developing a public health system in order to avoid the death
and managing the patients. The dataset is comprised of 3
features that included data related to recovered cases, con-
firmed cases, and also deaths. The unscaled data slowed
the process of convergence, and thus, min-max scalar was
utilized for the preprocessing which subtracted the original
value with the smallest feature value and divided the feature
range. The range is known as the difference among the max-
imum feature value to the minimum feature value at original
point. The min-max scalar reserved the original shape
obtained from the data distributions. The forecasting model
is comprised of autoregressive integrated moving average
(ARIMA), support vector regression (SVR), long-shot-term
memory (LSTM), and bidirectional long-short-term mem-
ory (Bi-LSTM) which assessed the time series prediction.
The time series models predicted confirmed cases, recover-
ies, and also, deaths based on the time. Thus, by the result
analysis, 10 major countries that were affected by COVID
were determined. This concluded that an appropriate pre-
dictor Bi-LSTM model predicted data and enhanced based
on the sequential data and predicted the accuracy for the
datasets which required a suitable planning for managing it
better.

Fu et al. [60] developed a CNN model using MRI images
that performed segmentation. The developed DL model con-
tained voxel wise label which was used for prediction and a
correction network. The network consisted of 2 subnetworks
that included dense blocks which consisted of 12 densely
connections. The subnetworks were able to learn for over-
coming the erroneous classification problem based on the
previous network considering the original and input images
which generated soft max probability based on the subnet-
work previously. Each of the subnetworks was trained by
parameters independently by using piece wise training. The
developed model was used for presegmenting the 3D MRIs
which were important for correcting manually for training
the datasets and also preparing it. This expedites greatly
the process of manual contouring which potentially faced
the problem of dataset in medical image deep learning
approach.

Zou et al. [61] developed a 3D CNN model which per-
formed an automated diagnosis of hyperactivity disorder
based on the structural and functional MRI. The public data-
set was available as a large neuroimaging dataset used for the
process of training. The deep learning model was automati-
cally diagnosed the disorder of psychiatric disorders which
showed feasibility. The developed model utilized deep learn-
ing approach that performed ADHD for classification
through 3D CNN applied to MRI. The deep neural network
(DNN) model was utilized with distinct parameters that
were large in number which acquired those data which was
limited with discriminated features obtained from raw data.
Thus, overfitting problem was overcome by using 3D CNN
model that trained various methods. The 3D CNN model
took it as an advantage of those intrinsic features which
showed partial connectivity, pooled the architectures, and
shared the weights. The developed model designed the vari-
ous number of layers and mapped the features which
avoided overfitting problem but retained sufficient network

BioMed Research International

capacity which solved the ADHD classification problems.
Data augmentation was performed for the drop out layer
and contained the weights in the network. The 3D CNN
model was trained and yielded better results in terms of
accuracy. The developed model considered 3D low-level fea-
tures extracted from structural and functional MRI data. The
data augmentation was performed through dropout tech-
nique which was connected with layers containing weights
in the network. The results showed that the proposed 3D
CNN was trained and thus yielded better results compared
to existing models. The developed model was investigated;
ADHD testing dataset showed superiority in the perfor-
mances compared to other approaches for few training sam-
ples. The architecture of DNN is shown in Figure 3.

Igbal et al. [62] performed segmentation of brain tumor
using multispectral MRI based on CNN. The CNN model
set up various techniques for providing results better com-
pared with the nondeep learning techniques which seg-
mented the brain tumor parts. The developed model used
CNN for segmenting the brain tumor regions using the
MRIs. The BRATS dataset was used for performing the seg-
mentation that showed challenge when composed with
images that showed different modalities. The extended ver-
sion of the model solved the segmentation problem due to
the multiple layers. The network architecture has multiple
layers sequentially connected to feed the CNN feature maps
at their high level. The developed model has a very small
structure, less memory, and fast for demanding. The SE
blocks were explored at distinct levels and explored that
the type of weighting strategy was better and showed good
results for combined classifier.

Mortazi et al. [63] developed a CardiacNET which per-
formed segmentation of proximal pulmonary veins and left
atrium from MRI using CNN model. The developed model
addressed the need of unmet clinical-based technologies
using deep learning-based segmentation technique for sepa-
rating LA and PPVs which obtained classification accuracy
at high rate and improved the efficiency. The developed
approach utilized a multiview CNN model which performed
fusion by using an adaptive strategy that allowed loss func-
tion operating faster and accurate improving its convergence
using the optimization approach known as back propagation
algorithm. The network model will be trained from the
beginning that has more than 60K 2D MRI slices of images,
and also, STACOM 2013 was utilized for performing cardiac
segmentation which showed difficulty by the benchmark
dataset. The novel method is going to be evaluated, tested,
and will be validated with more distinct datasets that con-
sisted of various cohorts operated at distinct imaging resolu-
tion images with noises at high levels across the scanner
vendors distinctly. The framework was extended to 4D
which analyzed the cardiac images that extended the possi-
ble parsing technique. However, the exploration of 3D car-
diac MRI required complete training on the basis of the
multiple GPUs that would overcome the segmentation prob-
lem by CNN.

The feature learning methods with random forest
[64-68] methods can be applied to improve the prediction
performance. In deep learning methods, LSTM [56-59, 69]
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can be applied for the clinical feature analysis, and CNN
models [60-63, 70] can be applied for the CT and MRI
images. The feature learning methods like principal compo-
nent analysis and k-mean methods help to improve the per-
formance of models. The evolutionary optimization
methods such as Ant Colony Optimization (ACO) and Fire-
Fly optimization were applied to improve the learning per-
formance of classifier model.

2.3. Datasets. The intracranial hemorrhage dataset (https://
www.kaggle.com/c/rsna-intracranial-hemorrhage-detection)
consists of CT scans of 25,000 exams from 60 subjects for
classification of hemorrhage [71-75]. The sample images of
RSNA intracranial hemorrhage is shown in Figure 4. The
study [34] collected 128 CT images from the Siemens
Healthcare Sector, Forchheim, Germany. The study [35] col-
lected CT images of 40 patients from Keio University Hospi-
tal between 2015 and August 2018. The study [36] collected
418 CT images from hospitals to analyze the performance.
The study [37] collected 1577 patients from the Department
of Neurosurgery of five Chinese hospitals located in China
from January 2017 to December 2018.

3. Comparative Analysis

Subarachnoid hemorrhage (SAH) is a major health issue
that has a higher mortality rate, and it leads to functional
disability of the person suffering from it. Some researchers
involved in applying machine learning and deep learning
techniques for the prediction of SAH. Recent, notable
researches that were used in the prediction and monitoring
of SAH are reviewed along with the advantages and limita-
tions of these researched methods in Table 1.

3.1. Challenges in Prediction of SAH. From the reviews of
various methods in the prediction of SAH, there are some
of the common limitations in the existing methods of SAH
prediction.

SVM methods applied in the existing SAH prediction
have the limitation of the model biased to class with high
instances. SVM method learns the instances in the vector,
and hyperplane models classify the data instances bias to
the class.

Random forest method in SAH prediction has overfit-
ting problem when number of tree is low and instable per-
formance when number of tree is high in the model
development.

CNN model generates the weight values for the input
features and performs the classification based on convolu-
tion and pooling data. The generation of more feature values
involves in creating the overfitting of the neural network.

4. Conclusion

SAH is considered one of the major health issues and has a
higher mortality rate among SAH patients. Prediction of
SAH and risk assessment helps to effectively treat the patient
and considered as a decision model. SAH prediction and risk
assessment involve the analysis of clinical factors, CT, MRI,
and EEG data. Existing methods involve applying the statis-

tical method, logistic regression, machine learning, and deep
learning methods. In this paper, a review of various predic-
tion models, used in SAH prediction, were carried out. The
advantages and limitations of the prediction models were
analyzed comparatively. Some researches involved the appli-
cation of EEG data that gave more accurate results in the
SAH prediction process. The analysis shows that machine
learning methods are more efficient in their performance
compared to the statistical and logistic regression methods.
Random forest, ANN, and SVM show considerable perfor-
mance in the prediction of SAH. The random forest consists
of two limitations: first is it has lower efficiency when some
trees are high, and second is the occurrence of the overfitting
problem when the number of trees is less. SVM and ANN
methods are less efficient in handling imbalanced datasets.
The deep learning method of CNN has higher efficiency in
the SAH prediction but has the limitation of overfitting
problem. The future research works regarding SAH predic-
tion will involve the application of the LSTM model in the
analysis of clinical factors and application of CNN in CT,
MR, and EEG data of SAH patients.
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