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Abstract

The photoplethysmogram (PPG) signal is an attractive
candidate for unobtrusive blood pressure (BP) monitoring,
as it is widely measured by wrist-worn devices. However,
most studies of PPG-based BP estimation techniques have
used finger PPG signals. This study compares PPG-based
BP estimation when using finger and wrist optical sensors.
Subject-specific linear regression models employing pulse
transit time, PPG intensity ratio and heart rate as features
for BP estimation were trained and tested using PPGs and
reference continuous BP values obtained from 22 healthy
participants performing 2 cold pressor tests. Mean± stan-
dard deviation of differences, and the mean absolute dif-
ference between reference and estimated systolic BP val-
ues were: 0.47 ± 10.44 mmHg and 7.78 mmHg for finger
PPG signals; and 1.05 ± 12.86 mmHg and 9.69 mmHg
for wrist PPG signals. Increases and decreases in systolic
BP of at least 10 mmHg were detected with F1 scores of:
0.81 and 0.76 for finger PPG; and 0.75 and 0.61 for wrist
PPG. Models performed better with finger PPG signals.
Different signal processing approaches were required for
finger and wrist signals, indicating that finger-based BP
estimation models should not be generalized directly to
wrist PPGs.

1. Introduction

High systolic blood pressure (SBP) is the modifiable
risk factor to which the largest proportion of cardiovas-
cular disease and chronic kidney disease burdens can be
attributed [1]. High SBP accounts for almost a fifth of all
attributable deaths and cardiovascular diseases remain the
main cause of global mortality [1, 2]. Currently, conven-
tional office blood pressure (BP) measurements are used
to diagnose and treat high BP [3]. However, parame-
ters derived from ambulatory BP monitoring, such as 24-

hour mean, day-time and night-time BP, variability, morn-
ing surge, and nocturnal dipping are better risk predictors
of death, cardiovascular outcomes, and target organ dam-
age [3].

However, it is difficult to adopt ambulatory BP moni-
toring into clinical practice because conventional ambu-
latory monitors using inflatable cuffs are expensive and
highly obtrusive, especially during sleep. As a result, pho-
toplethysmogram (PPG)-based techniques have gained re-
search attention as a convenient means for BP monitoring.
Most PPG-based methods assess pulse transit time (PTT)
between two sensors, which is still cumbersome for am-
bulatory applications [4]. Therefore, BP estimation tech-
niques relying on a single PPG sensor are appealing.

Most previous studies investigating BP estimation from
a single PPG were carried out using finger sensors [5]. The
wrist site would be much more attractive for use in wear-
able smartwatch technology. Hence, the aim of this study
was to compare the performance of BP estimation models
using a single PPG obtained from the finger or the wrist.

2. Materials

2.1. Data acquisition

A wrist PPG signal from a green LED was acquired
through reflectance mode using a wrist-worn device at a
sampling rate of 100 Hz. Finger PPG signals from red and
infrared LEDs were collected through transmittance mode
using the Nautilus 2.0 device at a sampling rate of 1000 Hz.
Both devices were developed at the Biomedical Engineer-
ing Institute (Kaunas, Lithuania). Reference non-invasive
beat-by-beat SBP, diastolic (DBP) and mean BP (MBP)
values were recorded synchronously from the finger using
the CNAP Monitor (CNSystems, Graz, Austria).

The cold pressor test was used to induce BP changes.
The study was performed in a quiet, temperature-
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controlled (24 ± 1 ◦C) room with participants seated. All
signals were acquired synchronously from the right arm
following the protocol in Fig. 1, in which participants im-
mersed half their left forearm in water or rested it on their
thigh. 1-min data segments before and during the first cold
water (7 ◦C) immersion were used for model training. 1-
min data segments from before, during and after the second
cold water (10 ◦C) immersion were used for testing.
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Figure 1. Study protocol with shaded 1-min segments for
model training and testing. Timeline given in minutes.

2.2. Dataset

Data were used from a study of healthy volunteers at
the Biomedical Engineering Institute (Kaunas, Lithuania),
with approval by the Kaunas Region Biomedical Research
Ethics Committee (No. BE-2-24). The required finger and
wrist PPG signals were acquired from a total of 36 par-
ticipants. Of these, 14 participants were eliminated from
the analysis due to PPG quality issues (12), frequent pre-
mature beats (1) and missing BP values (1). The remain-
ing dataset consists of signals from 22 participants (11 fe-
males), with age 36.4 ± 8.6 years and body-mass index
24.4 ± 3.8 kg/m2.

3. Methods

3.1. Choice of PPG pulse wave features

Three PPG pulse wave features selected for BP estima-
tion were PTT, PPG intensity ratio (PIR), and heart rate
(HR).

The majority of PPG-based models relate BP to PTT
through the Moens–Korteweg equation. Its squared in-
verse, 1/PTT2, is proportional to pulse pressure [6]. Con-
ventional PTT measurement requires at least two sensors.
In contrast, in this study we define a surrogate PTT as the
time difference between systolic and diastolic peaks of a
single PPG pulse wave obtained using a single sensor. It
is assumed that the diastolic peak following the dicrotic
notch represents the reflected wave.

PIR is the ratio of PPG peak intensity to valley intensity
[6] and reflects the change in arterial diameter from dias-

tole to systole. Based on a two-element Windkessel model,
it is assumed that 1/PIR is proportional to DBP.

HR was included as an additional feature based on the
observation that HR information can improve the perfor-
mance of PTT-based BP estimation models [7].

3.2. PPG signal processing

Baseline wander was removed from the PPG segments
using a high-pass finite impulse response (FIR) filter with
a cut-off frequency of 0.5 Hz. Finger and wrist PPG seg-
ments were filtered with low-pass FIR filters with cut-off
frequencies of 13 and 5 Hz, respectively. The onset of the
kth PPG pulse wave ok was defined as a minimum before
the rising slope of the pulse. Instantaneous HR was defined
as

HRk = 60/
(
t(ok+1)− t(ok)

)
, (1)

where t is time in seconds.
Pulses were eliminated if their instantaneous HRs devi-

ated from a smoothed HR by >20%. The quality of the
remaining pulses was assessed through correlation with a
pulse template, obtained as an average over a 1-min seg-
ment. Pulses with a correlation coefficient >0.95 were
considered high quality and retained for analysis.

By analyzing PPG signals, it has been noticed that sys-
tolic peak, sys, is not necessarily the maximum of the
pulse. Therefore, the fiducial point representing sys was
defined as the zero-crossing of the tangent to the maximum
negative gradient of the 1st derivative, represented by b on
the 2nd derivative (see Fig. 2a). If b could not be found,
sys was defined as the maximum of the pulse.

The diasolic peak, dia, was detected using different
methods for finger and wrist PPG pulse waves. In finger
PPG pulses, dia was defined as the first local maximum of
the pulse after e and before 80% of the pulse duration [8]
(see Fig. 2a). If no such maximum could be found, dia was
defined as the corresponding maximum on the 1st deriva-
tive. In wrist PPG pulses, the diastolic peak was often dif-
ficult to identify. Therefore, pulse decomposition was per-
formed by subtracting a symmetrical forward wave from
the pulse [9]. dia was defined as the maximum of the resid-
ual signal, representing the reflected wave (see Fig. 2b).

Finally, PTT and PIR for the kth pulse were defined as

PTTk = t(diak)− t(sysk), (2)

PIRk = 2 · x(sysk)/
(
x(ok) + x(ok+1)

)
, (3)

where x is the low-pass filtered PPG pulse but with base-
line retained.

3.3. Model training and testing

Feature outliers in each segment were eliminated from
the analysis, defined as values more than 1.5 times the in-
terquartile range above (and below) the upper (and lower)
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Figure 2. Detection of fiducial points on (a) finger and
(b) wrist PPG pulses. Dashed and dash-dotted black lines
represent forward and reflected waves, respectively.

quartiles. Subject-specific linear regression models were
used to estimate SBP, DBP, and MBP:

BPi = (ai/PTT2) + (bi/PIR) + ci · HR + di, (4)

where i indicates SBP, DBP or MBP, and a, b, c, d are the
coefficients estimated on the training segments.

Model performance was assessed on the testing seg-
ments. The mean and standard deviation of differences, as
well as mean absolute difference between reference CNAP
and estimated BP values were calculated. Average SBP
values over each 1-min segments were used to evaluate the
ability of the models to classify SBP changes into three
categories: (1) ≥ 10 mmHg, (2) non-significant change of
(−10; 10) mmHg, and (3) ≤ −10 mmHg. Classification
performance was expressed as sensitivity, specificity, pos-
itive predictive value and F1 score.

4. Results

Table 1 presents the agreement between reference and
estimated BP values. PPG-based estimates had a small
bias, although differences varied substantially with mean
absolute differences as large as 10 mmHg. Finger-based
estimation was slightly superior to wrist-based estimation.

Table 2 presents the performance of models for classifi-
cation of SBP changes. Finger-based models were more
sensitive to substantial increases and decreases in SBP,
whereas wrist-based models were more specific. In gen-
eral, the accuracy, measured as the F1 score, was higher
for finger-based models than wrist-based models.

Table 3 presents individual SBP changes during cold
water immersion (i.e. between testing segments 1 and 2),

Table 1. Agreement between reference and estimated BP
values using finger and wrist PPGs.

SBP DBP MBP
Mean of Finger 0.47 0.41 0.56
differences (mmHg) Wrist 1.05 0.54 0.64
p value 0.01 0.26 0.26
Standard deviation of Finger 10.44 8.60 9.08
differences (mmHg) Wrist 12.86 9.00 10.20
p value <0.01 <0.01 <0.01
Mean absolute Finger 7.78 6.36 6.77
difference (mmHg) Wrist 9.69 6.86 7.76

Table 2. Performance of PPG-based classification of
changes in SBP. PPV stands for positive predictive value.
95% bootstrap confidence intervals given in brackets.

Sens. Spec. PPV F1 score
Finger

≥ 10 mmHg 0.79 0.93 0.85 0.81
[0.50, 0.95] [0.78, 1.00] [0.55, 1.00] [0.59, 0.94]

(−10; 10) mmHg 0.63 0.79 0.63 0.63
[0.36, 0.85] [0.60, 0.92] [0.36, 0.85] [0.40, 0.80]

≤ −10 mmHg 0.79 0.87 0.73 0.76
[0.47, 0.94] [0.70, 0.96] [0.44, 0.92] [0.54, 0.90]

Wrist

≥ 10 mmHg 0.64 0.97 0.90 0.75
[0.36, 0.88] [0.82, 1.00] [0.50, 1.00] [0.48, 0.91]

(−10; 10) mmHg 0.81 0.57 0.52 0.63
[0.55, 0.95] [0.38, 0.75] [0.32, 0.71] [0.44, 0.79]

≤ −10 mmHg 0.50 0.93 0.78 0.61
[0.23, 0.78] [0.78, 1.00] [0.33, 1.00] [0.33, 0.82]

and recovery afterwards (i.e. between testing segments 2
and 3). Detection of SBP changes was problematic in sev-
eral individuals, such as No. 1, 2 and 8.

5. Discussion

This study investigated BP estimation based on a single
PPG signal acquired using an optical sensor at either the
finger or wrist. Personalised models were found to perform
better with finger signals than wrist signals. The models
accurately identified changes in BP during a cold pressor
test. However, their estimates of BP values did not agree
strongly with the reference BP values.

The approaches used in this study may have utility for
detecting changes in BP, with potential clinical applica-
tions. For example, the absence of a nocturnal dip in SBP
is predictive of stroke recurrence and left ventricular hy-
pertrophy [10,11]; an excessive morning surge is a risk fac-
tor for poor kidney function [11]; and a drop in SBP is in-
dicative of clinical deterioration in acutely-ill hospital pa-
tients, who are usually assessed only every 4–6 hours [12].

Though the use of smartwatches for unobtrusive BP
monitoring is attractive, this study shows that different ap-
proaches may be needed for wrist-based and finger-based
BP estimation. Finger sensors are intended for use in sta-
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Table 3. Changes in SBP during cold water immersion and
recovery afterwards.↗, —, and↘ represent≥ 10 mmHg,
(−10; 10) mmHg, and ≤ −10 mmHg, respectively.

Water 10 ◦C Recovery
No. CNAP (mmHg) Finger Wrist CNAP (mmHg) Finger Wrist
1 ↗ (15.73) — — — (−8.01) ↘ ↘
2 ↗ (10.87) — — ↘ (−16.40) — —
3 — (−4.18) — — — (−1.10) — —
4 — (1.83) — — — (−1.25) ↘ —
5 ↗ (18.63) ↗ — ↘ (−24.27) ↘ —
6 ↗ (17.40) ↗ ↗ ↘ (−12.44) ↘ —
7 ↗ (48.25) ↗ ↗ ↘ (−11.76) ↘ ↘
8 ↗ (21.09) — — ↘ (−25.38) — —
9 — (−2.84) ↗ — — (8.72) ↘ —
10 ↗ (10.16) ↗ ↗ ↘ (−14.76) ↘ ↘
11 ↗ (13.40) ↗ ↗ ↘ (−21.70) ↘ ↘
12 — (9.29) — — ↘ (−18.76) ↘ —
13 — (−5.60) ↗ — — (−2.11) — —
14 ↗ (17.51) ↗ ↗ ↘ (−16.58) — —
15 ↗ (19.89) ↗ ↗ ↘ (−28.18) ↘ ↘
16 ↗ (27.00) ↗ ↗ ↘ (−30.96) ↘ ↘
17 — (−4.19) — ↘ — (−6.89) — ↗
18 ↗ (31.41) ↗ ↗ ↘ (−19.49) ↘ ↘
19 — (−2.35) — — — (4.76) ↘ —
20 — (7.53) — — — (−1.22) — —
21 ↗ (23.56) ↗ — ↘ (−19.53) ↘ —
22 ↗ (20.99) ↗ ↗ ↘ (−20.53) ↘ ↘

tionary settings at home, clinics or a laboratory; hence,
they benefit from a high sampling frequency, transmittance
mode and red or infrared wavelengths, which penetrate
deeper into the tissues. In contrast, wrist sensors use re-
flectance mode, a green wavelength, and a lower sampling
frequency. These differences may influence PPG morphol-
ogy and BP-related features.

6. Conclusions

This study found that PPG-based BP estimation models
performed better when using finger signals compared to
wrist signals. The models were able to accurately identify
substantial changes in SBP, demonstrating their potential
utility for tracking changes in BP. Different signal process-
ing approaches were required for finger and wrist signals
to account for the different pulse wave morphologies, indi-
cating that approaches developed using finger PPG signals
may require modification before use in wrist-worn sensors.
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Birutė Paliakaitė
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