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ABSTRACT This work presents in detail a new method for the optimization of rectangular spread spectrum
excitation signals for its use in simple and low-cost ultrasonic pulsers, but that could be extended to
other applications based on spread spectrum signals. Starting from rectangular linear frequency modu-
lated (RLFM) chirps, it uses the transfer function of the transmitted signal and received echoes from reference
specimens to iterate through a recursive algorithm to obtain arbitrary position and width pulse (APWP)
signals with the desired bandwidth, maximizing the energy and the flatness of the spectrum, and enhancing
the resolution and dynamic range of conventional chirp excitation signals. This optimization procedure can
be repeated for any transducer and material, so that it achieves the best performance in each experimental
environment. Such characteristics are ideal for Time-of-Flight estimation, imaging, and applications in which
spectral regularity is needed, such as the Split Spectrum Processing (SSP) algorithm, which is used as
example to test the performance of the proposed excitation signals. It also allows to specify and change
the bandwidth reducing the need to change the transducers. The method is tested with different transducers
(2 and 5 MHz focused transducers) and complex composite materials (aluminum-carbon aviation composite
and high porosity GFRP composite) in immersion setup for imaging applications using SSP algorithm.

INDEX TERMS Ultrasound, spread spectrum, chirp, arbitrary position and width pulses, split spectrum
processing, nondestructive testing.

I. INTRODUCTION
Ultrasonic nondestructive testing has been used in all areas
of industry and research for many years, as it provides
a wide range of applications and solutions for the char-
acterization of the physical and mechanical properties of
the materials, their inner composition, structural condition,
aging behavior, etc [1], [2]. The number of environments
and materials in which it can be used is endless, from
gases to biological tissues, new complex nano-doped com-
posites or large vessel hulls. The range of applications is
also overwhelming, but almost all of them can be grouped, if
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attending to their purpose, in three general groups of applica-
tion: defect detection, characterization and imaging [3]–[6].
Finally, regarding the methodologies used, despite we would
need a full book only to list the number of processing algo-
rithms, procedures and methods used in ultrasound technolo-
gies, they can also be grouped in two sorts of methods, those
based on time domain analysis and those based on frequency
domain analysis, which combined lead to a third category for
the methods that use both approximations combined [7], [8].

The methods based on time domain analysis are mainly
devoted to calculate either the Time of Flight (ToF) between
pulses and echoes coming from the irregularities (inho-
mogeneities) inside the material, which will be used to
locate them or calculate propagation velocities, and/or the
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difference in the amplitude between them, which will provide
information about the attenuation suffered by the mechan-
ical waves, and therefore of the properties of the material
and/or the reflectors, as its size, geometry, acoustic contrast,
etc. [9]–[13]. In both cases, both the signal-to-noise
ratio (SNR) and the bandwidth of the signals are of most
importance, as they limit the accuracy and resolution of the
measurement. On the other hand, the methods based on fre-
quency domain are usually focused in the analysis of the vari-
ation with frequency of parameters such as the phase velocity
and frequency dependent attenuation [14], or in the resonant
behavior of the spectrum due to the recursive echoes that
appear in layered structures, which can be analyzed using res-
onant spectroscopy [15]. These parameters provide informa-
tion about the properties of the material, and are also utterly
dependent on the SNR and the bandwidth. Finally, time-
to-frequency analysis, such as spectroscopy imaging [16] or
Split Spectrum Processing (SSP) techniques [17], [18], [46],
are also affected by the regularity and shape of the spectrum.
As these methods usually are based on the comparison of
how materials respond at different frequencies, it is essential
to have signals with spectrum as wide as possible, so a
wider range of wavelengths can interact with the material,
and also as homogeneous (regular or flat) as possible so all
wavelengths are excited with similar energy.

To summarize, regardless of the method used, there are
three parameters that are crucial and should be carefully
analyzed when using any ultrasonic method: the SNR, that
should be as high as possible, the bandwidth, that should be as
broad as possible and/or as constrained to the specified limits
as possible, and the spectral regularity or flatness. There
are three factors that affect these parameters: the electronics
used, the electrical excitation signal and the ultrasonic trans-
ducer. In the electronics, the acquisition equipment and the
amplifiers are affected by noise, bandwidth, input impedance
and quantization. Regarding the transducers, the bandwidth
is limited by their AC response, and even using electrical
matching, composite piezomaterials or matching layers, the
available frequency rage is narrow [10], [19]–[22]. Regarding
the excitation signals, besides its amplitude, there are two
factors to consider. On the one hand the excitation signal
waveform and on the other how the excitation is produced.

Regarding the excitation waveform, the most commonly
used are; spikes, pulse signals, which are usually short rect-
angular pulses, and burst signals, which consist on a series
of periodic pulses tuned to a specific frequency. These sig-
nals are usually preferred because they are easy to gener-
ate and the results obtained with them are easy to interpret
and process, but they are very limited in terms of energy
and bandwidth [23]. Therefore, if our goal is to produce
ultrasonic signals with high energy and wide bandwidth, the
best option is to use spread spectrum (SS) signals [24]–[27],
such as these based on arbitrary waveforms [28], [29], chirp
(FM-CW, LFM) [24], [30], non-linear chirp (NLFM)
[20], [31] and PSK sequences [32]. The use of SS signals
offers significant advantages over conventional signals:

• They achieve a considerable improvement in the SNR
by increasing the duration of the excitation sig-
nal, without negatively affecting (reducing) the signal
bandwidth [33].

• The signals can be adapted (programmed) so that the
spectrum acquires a certain form, while the spectrum of
pulse and burst signals have a fixed form (sync) [30].

• An expansion of the width above the transducer pass
band can be achieved, increasing the out-of-band
energy [29].

SS signals also have disadvantages, mainly related to their
length (duration), dynamic range, spectral flatness and pro-
grammability. As for its length, SS signals have to be long to
gain energy, which reduces the axial resolution, enlarges the
dead zone, and could lead to overlapping reflections even for
widely spaced echoes [34]. On the other hand, the dynamic
range in the image is directly related to the dynamic range of
the lateral lobes, that is, the relationship between the ampli-
tudes of the main lobe and the lateral lobe, and the SS signals
have large lateral lobes in the correlation [23]. For example,
PSKs are good in perpendicular exploration, but they have
significant lateral lobes and their spectrum is fixed and very
irregular in the pass band [35], [36]. Chirp, especially non-
linear ones, achieve relatively flat spectra, but their correla-
tion also presents very high levels in the lateral lobes [24].
The cause is at the beginning and end of the signal, where all
frequencies are present. The dynamic range can be partially
improved by weighting the signals (Hamming, Hann, Tukey),
but this will negatively affect efficiency [37], and reduce
resolution due to the widening of the resulting main lobe.
On the other hand, the spectral programming of the chirp
is complex: there is no direct solution, although approaches
with some success have been used [31], [38], [39]. To achieve
acceptable spectral equalization, amplitude modulated chirp
(AM) [40] could also be used, although it consists of reducing
energy and therefore SNR, but if combined with non-linear
frequency modulation (AM-NLFM) [40], it is possible to
obtain relatively flat spectra, with good SNR and with the
desired shape.

Finally, there is another important issue that needs to be
analyzed, since the type of signal is as important as the way it
is generated. All the signals described above require arbitrary
waveform signal generators, analog-digital converters and
linear analog amplifiers, resulting in very expensive, costly
and energy-inefficient equipment. On the contrary, rectan-
gular signals are generated by simple switches, without the
need for conversion, so binary excitation is more attractive
and is widely used because: (i) it is simpler and the cost of
the equipment is lower [41], [42], (ii) has higher efficiency,
resulting in less temperature and longer battery life [43]
and (iii) the size and weight of the equipment are lower,
allowing portable equipment to be designed. Unfortunately,
binary signals have certain disadvantages in the same direc-
tion as those we saw related to the type of excitation, that
is, the irregularity of the spectrum, since chirp (unipolar or
bipolar) signals add curly to the spectrum [44], and the lack
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FIGURE 1. Experiment set-up (a) schematic and (b) experimental.

of dynamic margin, as additional lateral lobes appear in the
correlation [29].

To overcome all the aforementioned limitations, we devel-
oped a new set of signals based on arbitrary position
and width pulses (APWP) obtained from the conver-
sion of NLFM-compensated signals to rectangular APWP
prototypes followed by an iterative optimization process,
which results in signals with flat spectrum, high SNR
and programmable bandwidth. In [45] authors showed the
performance of the optimization method by modelling, and
a simple real example optimizing the signal passing through
a Plexiglas delay line. The challenge remains now in analyz-
ing whether these new set of excitation signals increase the
performance of the processing methods in real measurement
conditions analyzing noisy and complicated materials, such
as complex composites, marble, grainy metallic alloys, etc.
This paper explores one particular application, Split Spec-
trum Processing (SSP) algorithms, as it is a perfect candidate
to benefit from the properties of the new signals.

The work is organized as follows. Section II explain in
detail the optimization process of the APWP signals and
reviews briefly the well known SSP algorithm designed to
exploit it. Section III shows and discuss the results obtained
with real samples of different sorts of materials, and finally
we end up with the most relevant conclusions in section IV.

II. MATERIALS AND METHODS
A. MATERIALS AND EXPERIMENTAL SETUP
In order to perform the analysis, and following the general
scheme shown in Fig. 1a, an immersion pulse-echo set-up
was used (Fig. 1b), in which the transducer was mounted in a
kinematic mount attached to a holder in a XYZ scanner used
to scan the selected samples.

The scanner had a resolution of 200 µm per step in
the XY axes and 100 µm in the Z axes. The pulser-
receiver system was a SE-TX05-02 and the acquisition
system a SE-AQ01-00, both from KTU Electronics [42],
with 200 MHz sampling frequency in the pulser to gener-
ate the bipolar pulses, and 100 MHz sampling frequency

with 10 bits for the acquisition of the samples. Two set
of transducers were used: a 2.25 MHz focused immersion
transducer model IRZ602 from NDT Transducers LLC, and
a 5 MHz focused immersion transducer model V309 from
OLYMPUS. The liquid used was distilled water at 20◦ C.
In all the measurements, once the sample was placed in its
holder, the scanner was moved with the precision scanner in
the Z axis so that the focal point of the transducer coincided
with the surface of the sample, and then oriented using the
kinematic mount to ensure normal incidence.

The materials to be analyzed were of different origins and
properties: an experimental aluminum-carbon composite for
aviation industry, and epoxy resin based GFRP of high poros-
ity used for naval industry. For the optimization, reference
blocks of aluminum 7075-T6 and standard epoxy were used.
In all cases, the distance between the transducer and the
sample -either the reference reflector or the sample under
analysis-, was equal to the focal length of the corresponding
transducer.

B. SPECTRAL OPTIMIZATION OF APWP SIGNALS
As stated in the introduction, the main idea is to use quasi
chirp signals (sinusoids converted to rectangular waves)
instead of AM-NLFM signals, as the efficiency and the
exploitation of the dynamic output of the amplifier are much
better than their sinusoidal counterparts. Unfortunately, the
drawback is that the resulting spectral ripple in the band
pass is much higher, which goes against our spectral flatness
requirement. The alternative is to use the optimized APWP
obtained using the approach showed in [45], in which an ini-
tial simple LFM chirp is converted to a NLFM-compensated
chirp and then transformed into a rectangular APWP signal,
which then feeds an optimization algorithm to compensate
the spectral flatness.

We will summarize the steps followed to the derivation
of the signals, so other researches can reproduce easily all
the process. We encourage readers to review [45], where
the derivation of the optimization algorithm and its theoret-
ical justification is explained in detail. The equipment and
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FIGURE 2. (a) Excitation RLFM chirp (up-black) and received signal (down-blue), and (b) corresponding normalized magnitude spectra in n.u.

materials used are described in the previous section, and in
this particular example we will show the procedure for the
optimization when the target is an aluminum block. Note that
the optimization process is compensating the spectral loses
of the excitation electronics, transducer frequency response,
water-path and material surface, as depicted in Fig. 1a, so that
the signal that penetrates into the material and interacts with
it has the desired spectral properties. Once optimized, the
resulting excitation signals can be used to analyze samples
with similar properties (in this particular example, it would be
aluminum-based specimens). If any of the parts of the set-up
is changed, or wewould like to analyze other sort ofmaterials,
the optimization process should be repeated.

In this example we will review the steps followed to opti-
mize a 3 µs linear chirp with bandwidth 2-8 MHz to be used
to analyze aluminum-based materials with a 5 MHz focused
transducer, and selecting the desired resulting bandwidth also
with the same limits (2-8 MHz), so the comparison will be
more evident. The first step of the process will be to generate
the rectangular quasi-chirp pulse to excite the transducer and
record the received signal to analyze its spectrum. Fig. 2
shows the RLFM chirp used as excitation (Fig. 2a up-black),
the received signal (Fig. 2a down-blue) and their respec-
tive magnitude spectrum (Fig 2b), where the aforementioned
spectral ripples can be seen. Notice that signals have been
normalized for its better comparison.

As aforementioned and described in [40], the easiest option
to obtain the desired spectral shape, is to use a linear fre-
quency modulated (LFM) chirp with the desired duration and
bandwidth, convert it to its rectangular version (RLFM) as the
one showed in Fig. 4a, and then use a compensation function
to compensate the spectral losses, generating an amplitude
modulated (AM) chirp: h

SAM (f ) = SRLFM (f ) · κ(f ), (1)

where SRLFM (f ) is the frequency response of the transmitted
rectangular LFM chirp, SAM (f ) is the resulting frequency
response of the compensated transmission signal, and κ(f )
is the compensation function calculated as:

κ(f ) =
|W (f ))|√

|SRX (f )|2 + α ·max
(
|SRX (f )|2

) , (2)

where SRX (f ) is the spectrum of the received signal (Fig. 3a
blue) when transmitting the RLFM signal (Fig. 3a black),
W (f ) is a spectral windowing function used to control the
bandwidth (Fig. 3a dotted grey), and α is a coefficient used
for noise density approximation and to prevent κ(f ) from
discontinuities, and is estimated by the signal to noise power
densities ratio. Fig. 3b shows the resulting compensation
function, and Fig. 3c the obtained compensated spectrum,
whose inverse Fourier Transform will result in the desired
AM chirp, shown normalized in Fig. 3d.

Now, as described in Chimura et al. [31], we can produce
a NLFM chirp sNLFM (t) by nonlinear frequency modulation
using the inverse function of the time-frequency characteristic
τ (f ′) of the previous AM-compensated signal. According to
Parseval’s theorem, the energy of the AM-compensated sig-
nal STXAM (f ) and its nonlinear counterpart sNLFM (t) should
be the same, and assuming that the spectrum in the frequency
domain and the signal of constant amplitude in time domain
are partially identical, the time-frequency relation τ (f ′) of
STXAM (f ) (Fig. 4a) can be calculated as [31]:

τ (f ′) =
∫ f ′

0
|SAM (f )|2 ∂f , (3)

whose inverse function f ′(τ ) will be the instantaneous
frequency function needed to generate the NLFM chirp.
Unfortunately, τ (f ′) cannot be inverted because of its nonuni-
form gridding, therefore we will obtain f ′(τ ) (Fig. 4b)
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FIGURE 3. Normalized spectra of (a) excitation RLFM chirp (black), received signal (blue), transmission function (red) and spectral
window (dotted-grey), (b) spectral compensation function κ(f ), (c) compensated spectrum SAM (f ), and (d) resulting AM signal.

FIGURE 4. (a) Time-frequency characteristic function of the AM-compensated signal STXAM (f ), (b) interpolated instantaneous frequency function f ′(t),
and (c) corresponding instantaneous phase function θ(t).

by linear interpolation:

τ (f ′)
lineal interp.
−−−−−−−−→ f ′(τ ). (4)

Now, the phase function (Fig. 4c) can be obtained by
integration:

θ (t) =
∫ t

0
f ′(t)∂t, (5)

which will be used to produce the NLFM signal (red line in
Fig. 5a) as:

sNLFM = sin (θ(t)). (6)

Finally, the NLFM signal is converted to rectangular pulses
to obtain sRNLFM (t) (black line in Fig. 5a), which will be the
new excitation signal, considered as the seed APWP signal to
feed the optimization process:

sRNLFM = sign{sNLFM }. (7)

Notice that both the spectrum of the transmitted RNLFM
and its corresponding received signal (Fig. 5b) are highly
lobulated, as can be seen in Fig. 5c, therefore we are still far
from our goal. In order to achieve it, the optimization process
will modify the seed APWP signal changing the width of the
rectangular pulses recursively, aiming for the spectral flatness
ξ in the bandwidth of interest. This spectral flatness will be
estimated in each step as a measure of the standard deviation
of the spectrum around its mean, accounting for its variability
or flatness in the bandwidth, normalized by its mean value,
accounting for the energy in the bandwidth, so the lesser ξ the
better ratio flatness/energy. The flatness estimate at iteration
i− th will be calculated as:

ξi =

√∫ f max
fmin

∣∣|SRXi(f )| − |SRXi(f )|∣∣2
|SRXi(f )|

(8)

where |SRXi(f )| is the magnitude spectrum of the received
signal at the i− th step and |SRXi(f )| its mean.
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FIGURE 5. (a) Continuous (red) and rectangular (black) NLFM signals, (b) received signal when using the RNLFM (blue), and (c) their corresponding
spectra normalized in n.u.

FIGURE 6. Example of width reduction at a particular iteration at
step 2 of the optimization algorithm. RNLFM chirp seed (black), APWP
prototype (blue), and red arrows that show the pulse reduction direction
at stages 2 and 2b (left and right reduction respectively).

Therefore, once the optimization process converges,
we will have the excitation signal that produces the flattest
spectrum with the maximum possible energy. The optimiza-
tion algorithm involves several levels with different loops.
Any given original NLFM signal will have N rectangular
pulses, each of them with length Ln samples, with n =
1, · · · ,N . There will be an optimization loop to optimize
each pulse consecutively, and the process will be repeated
until the spectral flatness parameter lays below certain thresh-
old or there is no improvement. Thewhole process will follow
the next steps:

1) Transmit the original rectangular NLFM signal
obtained using (1)-(7) and calculate its initial spectral
flatness estimate ξ0. As aforementioned, this NLFM
prototype will have N rectangular pulses, each of them
with length Ln samples, with n = 1, · · · ,N ;

2) Resize the n − th pulse (starting from the first),
transmit it and estimate the new spectral flatness ξin.
Resizing involves a secondary recursive loop which
is made shortening the pulses from the left side l =
0, · · · ,Ln−1, and the right side r = 1, · · · , l − 1,
(Fig. 6) both referring to number of samples;
a) Transmit the resized pulse for a given l, and use

the received signal to calculate its corresponding
spectral flatness ξinlr ;

b) Repeat (a) for r = 1, · · · , l − 1;
c) Choose the best candidate for the n − th pulse

using the one that provides theminimum ξinlr , and
set ξin = minl,r ξinlr ;

3) Fix the pulse n − th to the one calculated previously
and repeat 2 for the next pulse updating n = n+1 until
n = N ;

4) Choose the best candidate for the new rectangular
NLFM signal on the i − th iteration as the one that
provides the minimum spectral flatness ξin, and set
ξi = minn ξin;

5) Repeat from 2 until the spectral flatness ξi lays below
certain threshold or until there is no improvement in ξi,
and choose as the optimum excitation signal the NLFM
that has produced the minimum ξi.

Fig. 7 shows an example of the result obtained after the
optimization of a 3 µs RLFM chirp with 2MHz-8MHz band-
width, first converted to a RNLFM (black line) according
to (1)-(7), into a APWP with the same bandwidth (blue line).
A conventional 5 MHz pulse signal (red line) is included in
the analysis to compare the advantages of using chirp sig-
nals. Notice that all the excitation signals are produced using
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FIGURE 7. (a) RNLFM seed (black) and optimized APWP (blue), (b) received signals for RNLFM (black), APWP (blue) and conventional 5 MHz pulse (red),
and (c) their corresponding spectra in n.u.

FIGURE 8. Cross-correlation function for the RLFM (black) and optimized APWP (blue) signals. Comparison of a) Main-to-Secondary lobe level, b) side
lobes energy leakage, and c) width and height of lateral lobes.

rectangular pulses with the same excitation voltage. Fig. 7a
shows the transmitted pulses, Fig. 7b the respective echoes
coming from the aluminum test specimen for which the
APWPwas optimized, and Fig. 7c shows their spectra, where
we can see how the spectral ripples have been significantly
reduced, with the drawback of a significant energy reduction,

but the algorithm ensures that the resulting excitation signal
has the maximum possible energy with the flattest spectrum.
This figure shows clearly the performance of the optimization
method, as the resulting APWP signal has a much more
efficient use of the bandwidth than the conventional RLFM,
specially considering the need of regularity (flatness) in the
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FIGURE 9. Example of APWP bandwidth programming using the optimization process. Signals in (a) time and (b) corresponding magnitude
spectrum in n.u.

spectrum. Furthermore, despite the reduction in the energy
supplied, it is still much higher and efficient than the conven-
tional pulse.

Another significant advantage of the optimized signal is
the improvement achieved in the cross correlation function,
which is crucial for the estimation of the Time of Flight [45]
and for its denoising performance when used as adapted filter.
Fig. 8 shows the normalized auto-correlation of the conven-
tional RLFM (black) and the optimized APWP (blue). As can
be seen (insert (a) in Fig. 8), the Main-to-Secondary level
achieved is significantly higher for the new APWP compared
to the RLFM. The energy leakage due to side lobes is also
much lower(insert (b) in Fig. 8). Finally, the width and height
of the lateral lobes (insert (c) in Fig. 8) is also much smaller
for the optimized APWP than for the conventional RLFM.
All these improvements redound in the performance of the of
the system in terms of its resolution and imaging, as we will
see in the results.

Finally, as an additional feature of the algorithm, the band-
width of the resulting signal can be programmed adjusting the
bandwidth of interest in the optimization process, therefore
the same transducer can be used to produce very specific
spectral shapes, achieving in all cases the flattest and more
energetic signal possible. This is illustrated in Fig. 9, which
shows APWP signals of different bandwidth optimized for
aluminum, all of them produced with the same transducer in
the same experimental set-up, the same RLFM seed, and the
same excitation voltage. See legend in Fig. 9b for the selected
bandwidths. The spectrum of the conventional 5 MHz pulse
produced with the same set-up and voltage is included for
comparison.

C. SPLIT SPECTRUM PROCESSING ALGORITHM
Split spectrum processing (SSP) is a well-known technique
in the field of ultrasound used to reduce the grain noise [17],
[18], [46], but also used in other areas as [47]–[49], due
to its simplicity and the good results that it provides. This
algorithm exploits the assumption that the reflection of small
scatterers inside the material are frequency sensitive due to
the random distribution of the phases received from every
one of them, as they depend on the size and orientation of
the scatterers. On the other hand, defects of size enough will
reflect a significant number of wavelengths with the same
phase (Fig. 10a and 10b)
The basic idea of the SSP algorithm is to pass the received

signal through a bank of filters covering the bandwidth of the
transmitted pulse, and compare the outputs of the filters using
a nonlinear recombination (Fig. 10c), so that when all the
outputs are similar, the resulting output is enhanced (defect),
and decreased when they are different (grain noise). Note
that according to this idea, we would like to have signals
with wide bandwidth, high SNR and with a spectrum as
regular (flat) as possible so all the wavelengths are excited
similarly and therefore the nonlinear comparison between
bands is fair. Now it is clear why the proposed optimized
APWP signals may be of interest to this algorithm, in order
to make it a bit more efficient and reliable.

Regarding the specific design of the algorithm, there are
many parameters to consider. On the one hand, considering
the design of the filter bank, we have to choose the number
of bands, the bandwidth of each band, the overlap between
bands and the filters design. These parameters have been
deeply studied in previous works of the authors [17], and the
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FIGURE 10. Example of application of SSP algorithm (a) Ultrasonic signal in time domain, (b) corresponding spectrogram, (c) general schematics for the
SSP algorithm.

best results have been achieved using Gaussian filters equally
distributed along the operational bandwidth and with 50% of
overlap. The impulse response of the Gaussian filters can be
calculated using:

hi(t) = e−t
2/2σ 2i cos (2πFCit), (9)

where FCi is the central frequency of the i − th band and σ 2
i

the variance of its corresponding Gaussian window, defined
as:

σ 2
i =

√
ln 2

2πBiFCi
, (10)

where Bi is the relative bandwidth at 3dB of the correspond-
ing filter:

Bi =
1B · (1+ 2Rol)

L
, (11)

with 1B the bandwidth of analysis, Rol the filters overlap
factor, in this case 0.5, and L the number of bands of the filter
bank.

The number of bands is a very sensitive parameter, as it
directly affects the probabilities of detection (PD) and false
alarm (PFA). A high number of bands ensure that only real
defects of enough size will produce similar outputs in all the
bands and therefore reduce the probability of false alarm, but
smaller, deeper or misaligned defects will not be detected.
On the other hand, reduced number of bands will increase
the probability of false alarm.

Regarding the recombination methods, according to our
experience and the preliminary analysis performed on the
materials, the polarity thresholding recombination algorithm
will be used as the basis for the recombination as it produces
the most reliable results in this case. According to this algo-
rithm, when all the bands have the same phase (sign of the
samples in time domain), the output will be the value of the
original signal, and zero otherwise. For a given signal x[n],

considering xi[n] as the output of the corresponding filter
hi[n], that is, xi[n] = x[n] ∗ hi[n], the result of the recom-
bination y[n] will be:

y[n] =

{
x[n] xi[n] < 0 ∀n or xi[n] > 0 ∀n
0 otherwise

(12)

This results in a very restrictive condition, which is very
conservative for high dispersive materials, so we will use a
less restrictive version in which the output is scaled with a
factor proportional to the number of bands with the same
polarity. The scaling factorM will be calculated as:

M =
|L+ − L−|

L
, (13)

with L+ and L− the number of positive and negatives values
respectively for each n.

Finally, in case of highly dispersive materials, pruning
technique [17] can be also applied to eliminate the bands
more affected by dispersion or gain noise.

III. RESULTS AND DISCUSSION
In this section we will show the results after processing some
materials using Split Spectrum Processing algorithms with
the optimized APWP signals. We will start by showing the
results of the optimizing process with different configura-
tions, and then the results of the processing stage.

A. OPTIMIZATION OF APWP SIGNALS
As stated in section 2.1., we used two sorts of transducers,
of 2 and 5 MHz, focused in both cases. We will use RLFM
chirp pulses of 3 µs for both transducers and excitations,
because this duration offer a good compromise between
energy and axial resolution for the selected specimens. For
the 2MHz transducer, the bandwidth of the RLFM pulses
will be of 2 MHz, in the band from 1 MHz to 3 MHz, and
for the 5 MHz transducer it will be of 6 MHz, in the band
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FIGURE 11. Normalized spectrum in n.u. for RLFM (black), optimized APWP (blue) and pulse (red) excitations (a) 5 MHz transducer on aluminum
specimen, (b) 2 MHz transducer on aluminum specimen, (c) 5 MHz transducer on Epoxy resin specimen and (d) 2 MHz transducer on Epoxy resin
specimen.

from 2 MHz to 8 MHz. In both cases, the optimized APWP
are designed to operate in the same bandwidth as the original
RLFM pulses, that is, 1 to 3 MHz in the 2 MHz transducer,
and 2 to 8 MHz for the 5 MHz transducer. These SS signals
will be compared with conventional pulse excitation signals
centered at the corresponding transducer’s central frequency.

The APWP signals were optimized for two different sce-
narios using reference specimens, depending on the material
to be analyzed, aluminum or epoxy-based composites. Fig. 11
shows the resulting spectra after optimization for the four
different scenarios; left figures for the 5 MHz transducer,
right figures for the 2 MHz transducer, upper figures for
the aluminum specimen, and lower figures for the epoxy
resin specimen. In each case, signals were normalized respect
to the RLFM chirp, which is the most energetic, but the
excitation voltages were the same for all excitations in each
experiment. As can be seen, in all cases the optimization
algorithm achieve the expected objectives, that is, a very
efficient use of the spectrum (flat pseudo-regular spectrum
and wide bandwidth), and retaining the advantage of working
with a long chirp, which ensures the best performance for
the cross correlation function in detection and ToF estimation
applications.

B. SPLIT SPECTRUM PROCESSING
We will see two examples to illustrate the behavior of the
optimized APWP excitation compared to the conventional
RLFM Chirp when combined with the SSP algorithm for
denoising and imaging. In the first case, we analyze a very

complex matrix aviation composite specimen build up by
layers of aluminum-6082 with 43% volume fraction of low
modulus long carbon fibre reinforcements in a [0◦, 90◦] lay-
up. The thickness of the flat-bottomed plate is 12 mm, and
four holes of 4mm, 6mm, 8mm and 10mmweremade on the
specimen to analyse the imaging performance of each signal.
An image of the actual plate and of its inner structure obtained
by X ray analysis is shown in Fig. 12. For each excitation,
a B-scan was acquired from the flat-bottom surface of the
specimen along one axis passing across the holes (black
dotted line in Fig. 12b and 12c), using a precision scanner
with steps of 0.2 mm.

For this specimen, transducers and excitation signals are
the same as in the first example of previous sections, that is,
using a 5 MHz focused transducer, rectangular LFM chirps
from 2 to 8MHz and corresponding APWP signals optimized
using the aluminum reference block. In all cases, signals
were cross correlated with its corresponding reference before
processing to reduce noise and compress the signal. The
SSP algorithm was then applied using the scaled polarity
thresholding recombination method and pruning the higher
bands, so that only 5 bands from 1 to 3MHzwere considered.

Fig. 13 shows the results obtained, in which, for a better
appreciation of the details, each Bscan is accompanied with
a Ascan from an specific position (around 36 mm in the
scanning direction marked with a black solid line in the
corresponding Bscan) and displayed immediately below it.
Upper figures (Fig. 13a, 13b and 13c) show the result for
the RLFM chirp and lower figures (Fig. 13d, 13e and 13f)
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FIGURE 12. Aluminum-Carbon aviation composite. (a) XRAY image, (b) front (flat) surface and (c) back (machined) surface.

FIGURE 13. Results for the carbon-aluminum composite with the 5 MHz transducer. In each subfigure, upper graphic shows the Bscan and lower grahphic
a Ascan at a particular position (horizontal black line in Bscans). (a) raw signal for RLFM, (b) compressed signal before SSP for RLFM, (c) result after SSP
for RLFM, (d) raw signal for APWP, (e) compressed signal before SSP for APWP, (f) result after SSP for APWP.

for the optimized APWP. From left to right, it shows the
raw unprocessed signals (Fig. 13a and 13d, amplitude in
natural units), signals after compression with the references
(Fig 13b and 13e, envelope in dB), and finally the result
after applying the SSP algorithm (Fig. 13c and 13f, envelope
in dB).

As it was expected, in both cases raw signals are not able
to provide any information about the inner structure because
of the grain noise and attenuation (Fig. 13a and 13d). Once

the compression is made, the strong lateral lobulation of the
cross correlation function is clearly evident for the RLFM in
Fig. 14b (area between the red lines), masking completely the
echoes coming from holes in that region. On the other hand,
the lateral lobes are significantly smaller for the new APWP
signal (green ellipse), as can be seen in Fig. 14e and 14f,
where only a small lobe remains. Notice that now echoes
from holes 4 and 6 mm depth can be seen (red ellipses).
Finally, after SSP, it is again clear the advantages of using the
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FIGURE 14. Porous epoxy GFRP naval composite. (a) front (flat) surface, (b) back (machined) surface and (c) lateral view.

FIGURE 15. Results for the porous GFRP composite with the 5 MHz transducer. In each subfigure, upper graphic shows the Bscan and lower grahphic a
Ascan at a particular position (horizontal black line in Bscans). (a) raw signal for RLFM, (b) compressed signal before SSP for RLFM, (c) result after SSP for
RLFM, (d) raw signal for APWP, (e) compressed signal before SSP for APWP, (f) result after SSP for APWP.

optimized APWP signal, in the sense that all echoes in the
lateral lobes’ region can be seen (6 and 8 mm), and even the
closer hole (10 mm) can be slightly appreciated because of
the better dynamic range of the main-to-secondary lobe ratio,
which also improves slightly the axial resolution. Note that
the response of the SSP is also better for the APWP in therms
of SNR, as can be clearly seen if we compare the Ascans in
Fig. 13c and Fig. 13f.

In the second example, a high porosity GFRP composite
made up of randomly oriented chipped glass fibers was ana-
lyzed, with the same transducer and signals optimized for
epoxy composites. This sample has one flat surface and the
other one has different thicknesses. An image of the actual
plate is shown in Fig. 14. For each excitation, a B-scan was
acquired from the flat-bottom surface of the specimen along
one axis passing across the thick steps machined on the other
surface (black dotted line in Fig. 14b and 14c), using the pre-
cision scanner also with steps of 0.2 mm. In this case, before

processing, signals were aligned for a better interpretation of
the images.

This example shows again the superior performance of the
APWP signals in terms of dynamic range, as even before
SSP, the back surface echoes can be seen (Fig. 15e) in the
compressed signals, while the poor dynamic range of the
RLFM chirp masks all reflections (Fig. 15b). Notice that even
after SSP, the secondary lobes persist for the RLFM, masking
the delamination (Fig. 15c) that can be clearly seen when
using APWP (Fig. 15f), where a better dynamic range and
image resolution can be appreciated for all the echoes.

IV. CONCLUSION
In this work we showed a method for the optimization of rect-
angular LFMchirps intoAPWP signals in terms of bandwidth
efficiency and regularity (flatness), and cross correlation
function performance. We have focused here in ultrasonic
applications, in which chirp signals with specific bandwidth
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and properties are required, but could be expanded for any
application in which optimized APWP signals are required.

Regarding the digital pulsed nature of the resulting
APWP signal, there is a substantial advantage if compared
with analogue signal generators, as digital ones are faster,
more reliable, smaller, programmable and with lower power
requirements, what make them suitable for portable and/or
autonomous systems and applications.

It can also be optimized for different environments, being it
the propagation path, transducer transfer function, or reflec-
tivity properties of the material to be excited, as the optimiza-
tion process accounts for all of them. It is quite simple and
takes just a few minutes for each optimization process, which
is quite practical considering that this is only needed in the
calibration stage of any experimental task.

As future works, the optimization algorithm, which is now
by simple recursivity, could be developed to make it more
efficient, although not really needed unless workingwith very
long signals. On the other hand, it would be interesting if
the shape of the spectrum could be also selected with some
specific trend, for which the optimization rules should be
adapted to the spectral shape desired.
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