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VICTOR HUGO C. DE ALBUQUERQUE b, RYTIS MASKELIŪNAS c
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Parkinson’s disease (PD) is the second most common neurological disorder in the world. Nowadays, it is estimated that
it affects from 2% to 3% of the global population over 65 years old. In clinical environments, a spiral drawing task is
performed to help to obtain the disease’s diagnosis. The spiral trajectory differs between people with PD and healthy
ones. This paper aims to analyze differences between handmade drawings of PD patients and healthy subjects by applying
the SqueezeNet convolutional neural network (CNN) model as a feature extractor, and a support vector machine (SVM)
as a classifier. The dataset used for training and testing consists of 514 handwritten draws of Archimedes’ spiral images
derived from heterogeneous sources (digital and paper-based), from which 296 correspond to PD patients and 218 to healthy
subjects. To extract features using the proposed CNN, a model is trained and 20% of its data is used for testing. Feature
extraction results in 512 features, which are used for SVM training and testing, while the performance is compared with
that of other machine learning classifiers such as a Gaussian naive Bayes (GNB) classifier (82.61%) and a random forest
(RF) (87.38%). The proposed method displays an accuracy of 91.26%, which represents an improvement when compared
to pure CNN-based models such as SqueezeNet (85.29%), VGG11 (87.25%), and ResNet (89.22%).
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1. Introduction

Parkinson’s disease (PD) is a relatively common neural
impairment that affects 2–3% of the global population
older than 65 years old (Poewe et al., 2017), making
it the most widespread neurodegenerative disorder after
Alzheimer’s disease. PD is a neurodegenerative
dysfunction that is present in around 1,000,000 people
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worldwide (Chen-Plotkin, 2017). The disease affects the
human motor system, which may lead to tremors, muscle
stiffness, slowness of movement, postural instability
(Tysnes and Storstein, 2017) and freezing of gait (Priya
et al., 2021). The non-motor symptoms of PD are
represented by cognitive problems, neuropsychiatric
disturbances, and sensory changes. PD is related to the
lack of dopamine; however, what triggers the process is
not yet known (Pereira et al., 2018). The motor symptoms
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characteristic of the disease is a result of the degeneration
of dopaminergic neuron cells in the nigrostriatal pathway,
which originates in a brain region called Substantia Ni-
gra (Trist et al., 2019), and sends its signals to the cau-
date nuclei and putamen of the striatum (Crowley et al.,
2019). Despite technological advances and healthcare
precautions, no diagnostic treatment exists that can slow
down nor prevent the disease progression (Oertel, 2017).

There is no specific test capable of diagnosing the
PD. The diagnosis of the disease is given by a neurologist
based on their past experiences, physical and neurological
laboratory tests, and a review of symptoms (Gelb et al.,
1999). PD is considered if the patient has one or more
characteristic symptoms. The presence of resting tremors
makes the diagnosis of PD more propitious, although
this symptom manifests in only 80% of the cases (Savitt,
2006). Clinical rating scales such as the Unified PD
Rating Scale (UPDRS) are used to evaluate the state of
the motor system of the PD patients. However, such
observations are costly and time-consuming. Subjective
evaluation of the patient should be complemented by
objective and affordable motor abilities tests.

Handwriting research has been shown to be helpful
in diagnosing and tracking neurodegenerative disorders.
Deterioration of handwriting abilities, for example,
appears to be linked to Alzheimer’s disease (AD)
(Garre-Olmo et al., 2017), and some handwriting-related
features can be used as markers for diagnosing it, or
to distinguish the neurogenerative disease from a mild
cognitive dysfunction. Since handwriting problems in
PD patients have been known for a long time, the
characteristics of handwriting is a good biomarker of the
disease (Impedovo and Pirlo, 2019). Handwriting is,
in particular, a multifaceted operation that requires fine
motor control, eye-hand coordination, and visuo-spatial
skills (Tseng and Cermak, 1993).

Currently, the Archimedes spiral handdrawing test,
which is part of the Fahn tremor rating scale (FTRS), is a
golden standard test for analysing hand tremor (de Ipina
et al., 2018). Traditionally, the Archimedes spiral is
performed as a simple manual measurement of tremor
severity. For example, the Fahn–Tolosa–Marı́n tremor
rating scale (FTM) uses a scale of 0 to 4 to assess hand
tremor in spiral drawings. Such tremor rating scales
provide subjective assessments of the severity of tremor.
A digital version of the Archimedes spiral hand drawing
was developed for quantitative analysis, which has the
potential to provide increased objectivity and clinical
utility, as well as sensitivity in capturing and analyzing
tremor severity. Digital spiral analysis is a promising
and inexpensive technique that can be used to quantify
movement abnormalities in motor function oriented tasks
(Luciano et al., 2016). Kinematic analysis of tests using
the Archimedes spiral provides sufficient quantitative
kinematic parameters (frequency, direction, amplitude,

velocity, acceleration, and pressure) to differentiate types
of tremors among neurological movement disorders (Hess
et al., 2014). The analysis of spirals, drawn either on
paper or on a graphics tablet, has been shown to be a
sensitive and valid method to quantify tremor in cohorts of
patients with essential tremor (ET), which is largely based
on the assessment of rhythmical components of tremor
within spirals (Haubenberger et al., 2011).

Handwritten spiral drawing has become common
in evaluating the tremors characteristic of PD (Lin
et al., 2018) being also a significant biomarker for
the diagnosis process (Stefano et al., 2019). Machine
learning approaches to distinguishing between normal and
unhealthy subjects based on simple and easy-to-perform
handwriting tasks have been shown to be efficient
(Rosenblum et al., 2013). Spiral abnormalities including
smoothness and drawing speed were proposed to be a
useful measure that can be derived from spirals in patients
with PD (Saunders-Pullman et al., 2008). Exploiting
dynamic aspects of the handwriting process is often used
for researching the diagnostic ability of handwriting tasks.
This method is based on the study of time series data
describing handwriting, which can be obtained using
e-tablets and electronic pens. Digital spiral analysis is
a fast and inexpensive approach that can be used to
evaluate motor abnormalities in functional drawing tasks.
Analysis of tests using the Archimedes spiral provides
sufficient quantitative kinematic parameters (frequency,
direction, amplitude) to distinguish between the types of
tremors among neurological movement disorders (Hess
et al., 2014). The analysis of spirals, drawn on paper
or on a digital tablet, was proven to be a valid method
to quantify tremor in patients with essential tremor (ET)
(Haubenberger et al., 2011) and in patients with PD
(Saunders-Pullman et al., 2008).

The advances of touch screen and tablet/smartphone
technologies enables the acquisition of online hand tremor
signals, which include both spatial and temporal data,
allowing to explore a large variety of temporal, kinematic,
and dynamic features, which cannot be studied objectively
using a classical paper-and-pen based method. The touch
screen devices are able to record the finger-touching
movements with great spatial and temporal precision and
allow for quantitative characterization of kinematics of
upper limb motor performance (Lauraitis et al., 2019;
2020), but their use is mitigated by the natural variability
of the tremor (de Ipina et al., 2018). The advance of
artificial intelligence (AI) technology allowed automated
recognition of many diseases (Chen et al., 2020; Guan
et al., 2020; Kowal et al., 2021), including a better
comprehension of the characteristics of PD (Espay et al.,
2016). Nowadays, many works are developed each year
aiming to find a computer aid approach that allows the
detection of PD. As an example of such research, some
are highlighted in the following section.
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This study proposes a new approach based on the use
of two powerful computational tools, convolutional neural
networks (CNNs) as feature extractors, and a support
vector machine (SVM) as a classifier on handwritten
spiral draws performed by PD patients and healthy
subjects. The novelty and contribution of this paper are
the following:

• A new data set of spiral drawings of PD affected
subjects and healthy subjects made by combining
paper drawings and digitally acquired drawings from
multiple public datasets, totalizing 514 drawings.

• A novel hybrid two-stage CNN and SVM system
(SqueezeNet + SVM method) for spiral drawing
classification and PD diagnostics.

Further, this work is structured as follows. In
Section 2, related works are analyzed and discussed.
In Section 3, a theoretical base is established for an
easier understanding of the proposed solution. Section 4
presents and describes the methods used in this work.
In Section 5, the obtained results are displayed, and in
Section 6 conclusions are presented and future work is
discussed.

2. Related works

Machine learning (ML) bounds a vast range of algorithms
and modeling tools used for a vast spectrum of data
processing works. The making of predictions is based
on input data features previously presented for model
training. The learning process can be classified in
two groups: supervised learning, when the algorithm
is presented with classes to which the presented data
belong, and unsupervised learning, when the classes are
not informed to the algorithm. The ML algorithms have
the potential to improve the efficiency of health care when
applied to predict the disease. Clinical data sources allow
a fast generation of disease prediction models for many
similar clinical questions (Chen and Asch, 2017).

Some of ML methods were proposed in the context
of PD recognition. For example, Gupta et al. (2018)
proposed an improved and optimized version of the crow
search algorithm (OCSA). To measure the performance of
the proposed method, it was applied on 20 benchmark data
sets. The proposed solution was able to find an optimal
subset of features for optimizing the accuracy of disease
recognition.

In the work of Pereira et al. (2018), a CNN was used
to learn features from images produced by handwritten
dynamics, which captured diversified information during
the individual’s assessments. The results were compared
against raw data and texture-based descriptors, resulting
in an accuracy of 95%.

Gupta et al. (2019) suggested an optimized cuttlefish
algorithm (OCA) to detect PD in its early stages. To
accomplish the proposed task, the decision tree (DT)
and K-nearest neighbor (KNN) were applied on a data
set composed of handwritings and sound records. The
proposed model achieved 94% accuracy and showed that
a bio-inspired algorithm can find a reduced subset of
features, which maximized the accuracy.

A CNN applied to electroencephalogram (EEG)
signals was proposed by Oh et al. (2018). The
data originating from 20 PD patients and 20 healthy
individuals was submitted to a 13-layer CNN. The
model achieved 88.25% accuracy, 84.71% sensitivity, and
91.77% specificity.

In the work of Almeida et al. (2019), 18 feature
extraction techniques and four ML methods were applied
on voice records in the Lithuanian language through the
usage of two microphones from acoustic cardioid and a
smartphone. The study showed that the data from the
phonation task allowed to achieved a better performance
than the data from the speech task. The task showed an
accuracy of 94.55% on the AC channel and 92.94% on
the SP channel in detection of PD.

Gil-Martı́n et al. (2019) used a CNN model on
drawing movements to recognize the PD. As input to the
CNN, the coefficients of the fast Fourier transform (FFT)
in the range of frequencies between 0 Hz and 25 Hz were
used. A data set of handmade spirals with data acquired
from a tablet was used. The model achieved 96.5% of
accuracy, and an F1-score of 97.7%.

Bernardo et al. (2019) applied three machine
learning algorithms, optimum-path forest, SVM, and
naive Bayes (NB), for analysing handwritten patterns,
such as spiral, triangle, and cube, collected from 20 PD
patients, from which 11 features were extracted, to obtain
the PD diagnosis. The system obtained 96% accuracy
on a triangle pattern, 100% on cube and 100% on spiral
pattern, and 100% sensitivity on all three patterns, but the
dataset was very small, so the perfect result may have been
due to over-fitting.

The work of Zhang et al. (2020) consisted of
applying a CNN on speech signals to obtain the
diagnosis of PD. Time-series signals were converted into
spectrograms to represent the time and frequency features
of the signal as an image. The spectrograms were then
applied to train the CNN model, which achieved an
accuracy of 91%.

Based on the impaired handwritten ability of PD
patients, Al-Yousef et al. (2020) applied the static spiral
test and a dynamic spirals test performed on a digital tablet
for the diagnosis of PD. The semi-local edge histogram
extracted from the dynamic spiral test, and conveyed to a
Gaussian kernel SVM presented a better result than other
systems considered in the study, achieving specificity and
accuracy of about 90%.
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In the work of Awatramani and Gupta (2020), the
handwritten examinations from the HandPd data set,
which contains images of spirals and Meander template,
were used. The images were submitted to a transfer
learning deep learning process aiming to detect the disease
in its early stage. The solution achieved 98.24% accuracy
on the spiral image set, and 98.11% on the Meander set.

Chakraborty et al. (2020) proposed a method to
distinguish between PD patients and healthy subjects
using two CNN models applied to handwritten patterns
such as spiral and wave. The solution used data from a
total of 55 patients obtaining an accuracy of 93.3%, recall
of 94%, precision of 93.5%, and F1-score of 93.04%.

Moshkova et al. (2020) used a leap motion device
to acquire PD patient hand tremors during motor tasks.
The collected data were submitted to a one-dimensional
(1D) CNN, trained on a data set of each hand during the
performance of three motor tasks: finger tapping, finger
opening-closing, pronation-supination of the hands. The
features learned by the CNN were used by ML algorithms
such as KNN, SVM, DT, and RF for classification.
From the tested algorithms, SVM achieved a better
performance, obtaining 85.1% accuracy.

The usage of the VGG-19 CNN model, pre-trained
on more than a million images from the ImageNet
database, for PD diagnosis was proposed by Shaban
(2020). To train and test the proposed solution, the Kaggle
dataset was used, providing 102 images of handwritten
spirals and 102 images of handwritten waves. The patterns
were pre-processed by applying image resize and data
augmentation based on image rotation aiming to minimize
overfitting. The model achieved an accuracy of 88% and
89%, and sensitivity of 89% and 87% on the wave and
spiral patterns, respectively.

Another promising approach was published by
Moetesum et al. (2019), who reached an 83% accuracy
by employing CNN models that were used to extract
the discriminating visual features from handwriting data
transformed into the offline mode.

Summarizing the related research, small data set
size, class imbalance, overfitting, high false detection rate,
model complexity, and other obstacles have hampered
research efforts in the early diagnosis of PD due to
comparative rarity of the disease. Using small datasets
for model training can lead to very good results due
to overfitting, however such models are often unusable
with real-world data due to diversity of sources and
high variability of subject characteristics. A summary of
related works based on the approaches to detect PD can
be seen in Table 1.

3. Theoretical foundations

We describe the use of the Archimedean spiral for PD
recognition and the methods used in our framework.

Fig. 1. Graphical representation of the Archimedean spiral.

3.1. Archimedean spiral. The Archimedean spiral,
shown in Fig. 1, can be expressed in polar coordinates
(r, θ) through

r = a+ b × cos (θ). (1)

The parameter a controls the rotation of the spiral, while
b establishes the distance between successive rotations.
Here, r is the radial distance, a and b are the real number
constants. Varying a turns the spiral, whereas varying b
controls the distance between successive turns, and θ is
the polar angle.

This pattern has been vastly used to help PD
diagnosis and disease progression in a clinical
environment since it offers a good graphical
representation of motor impairment, being a gold standard
for PD recognition (Stefano et al., 2019; Impedovo and
Pirlo, 2019).

3.2. Convolutional neural network. The CNN is a
type of artificial neural network (ANN) used in image
recognition and processing. It is specifically used to
process the data encoded as pixels of an image, and having
characteristics such as texture and colour. A typical CNN
model has two basic parts: (i) a feature extraction part,
consisting of a set of convolutional layers accompanied
by max-pooling and an activation function, and (ii) a
classifier part, usually consisting of fully connected layers
(Khoshdeli et al., 2017). A deep layered architecture of
CNN allows the extraction of a large set of discriminating
features at many levels of abstraction (Tajbakhsh et al.,
2016).

3.3. SqueezeNet. SqueezeNet, shown in Fig. 2, is
an 18-layer deep neural network developed with a lower
number of parameters, but it still maintains a high
accuracy (Islam et al., 2020). The use of SqueezeNet
helps us to decrease the memory consumption as well
as the processing time for classification as compared
with other multi-layered deep learning models (Nguyen
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Table 1. Related works on Parkinson’s disease diagnosis based on computer-aided approaches.
Reference Approach Algorithms Best accuracy
Gupta et al., 2018 Handwritten draws OCSA 100%
Pereira et al., 2018 Handwritten draws CNN 95%
Gupta et al., 2019 Not specified Optimized cuttlefish, DT, KNN 94%
Oh et al., 2018 EEG CNN 88.25%
Mucha et al., 2018 Hand writings Fractional derivatives, RF, SVM 72.38%
Impedovo et al., 2018 Hand writings RF, SVM, K-NN, NB, LDA, ADA 74.76%
Zham et al., 2018 Handwritten draws (spiral) Naive Bayes 93.3%
Gallicchio et al., 2018 Handwritten draws (spiral) Deep echo state networks 89.3%
Khatamino et al., 2018 Handwriting drawings CNN 72.5%
Almeida et al., 2019 Voice records ML 94.55%
Gil-Martı́n et al., 2019 Drawing movements CNN 96.5%
Bernardo et al., 2019 Handwritten draws OPF, SVM, naive Bayes 100%
Moetesum et al., 2019 HAndwritings Differential analysis, CNN, SVM 83%
Zhang et al., 2020 Speech CNN 91%
Sivaranjini and Sujatha, 2019 MRI CNN 88.9%
Al-Yousef et al., 2020 Handwritten draws SVM 90%
Awatramani and Gupta, 2020 Handwritten draws Deep learning 98.24%
Chakraborty et al., 2020 Handwritten draws CNN 93.3%
Moshkova et al., 2020 Handwritten draws CNN, SVM 85.1%
Shaban, 2020 Hand tremours VGG-19 88%

et al., 2018). We have chosen the SqueezeNet model
due to its lightweight architecture, a smaller number of
parameters and faster training times. SqueezeNet has
been recently released (2016) and is increasingly used
by researchers for various applications (see, e.g., Kriti
et al., 2020; Jin et al., 2021).

The main advantage of the SqueezeNet network
is a 50 times performance improvement over AlexNet,
a benchmark deep CNN model, while maintaining a
comparable classification accuracy (Iandola et al., 2016).
To ensure computational efficiency, the size of the
convolution filters has been reduced from 3×3 to 1×1. In
consequence, the number of trained parameters has been
reduced by 9 times.

Thus, the SqueezeNet network is built from modules
of the same type, called “Fire module” (Fig. 2). A Fire
module consists of a squeeze convolution layer (which has
only 1 × 1 filters) that feeds into an expand layer, which
has a mix of 1×1 and 3×3 convolution filters. SqueezeNet
begins with a single convolution layer (conv1), succeeded
by 8 Fire modules (fire2–fire9), ending with a final
convolution layer (conv10). Max-pooling with a stride of
2 is performed after the conv1, fire4, fire8, and conv10
layers. Downsampling is done late in the network, so that
the convolution layers have large activation maps, which
can increase the classification accuracy.

3.4. Support vector machine. SVM is a widely
used method for pattern classification, whose accuracy
is highly influenced by feature selection and kernel

parameter settings (Wang and Chen, 2020). SVM finds
a linear hyperplane in a higher dimensional feature space,
which results in providing a nonlinear decision boundary
in the original input space. This algorithm has shown good
performances when applied to the classification of a wide
variety of medical problems as presented, e.g., by Wang
et al. (2018).

The set of mathematical functions used by SVM
are called kernels (Cristianini and Ricci, 2008), which
are functions responsible for receiving the input data and
transforming them into the desired form. Kernel functions
can be of different types such as linear

k(xi, xj) = xi · xj , (2)

where xi · xj represents the linear product of data points
xi and xj , radial basis functions (RBFs)

k(xi, xj) = exp

(
− ||xi − xj ||2

2σ2

)
, (3)

where ||xi − xj || is the Euclidean distance between
two data points, while σ represents the variance, and
polynomial

k(xi, xj) = (xi · xj + c)d, (4)

where d represents the polynomial order of the kernel, and
c is the constant that allows to control the influence of high
and low order terms.
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Fig. 2. Architecture of SqueezeNet with main blocks shown
(four bypass convolutional 1 × 1 blocks are not pre-
sented) (Nguyen et al., 2018).

4. Methods

In this section, the computational, experimental, and
mathematical approaches used for the development of this
work are presented. The workflow of the proposed hybrid
SqueezeNet + SVM method is presented in Fig. 3 and
explained in more detail in Sections 4.2–4.6. The main
steps are as follows:

1. image preprocessing and random partitioning of the
data set into training (80%) and testing (20%) parts
(Section 4.2);

2. augmentation of the training data set using
geometrical image transformations of resize
and rotation (Section 4.2);

3. training of SqueezeNet model; this step includes
multiple iterations of training with different values
of model hyperparameters, while optimisation is
performed using the Bayesian search (Section 4.3);

4. extraction of deep features for the second stage
(SVM) classifier (Section 4.4);

5. training of the SVM classifier; this step includes
multiple iterations of training with different values
of model hyperparameters, while optimization
is performed using the Nelder–Mead method
(Section 4.5);

6. classification using unseen data and performance
evaluation (Section 4.6).

4.1. Data set. The data set used for this work
consists of 514 images of handmade spirals. The images,
collected from several public data sets (Parkinson Disease
Spiral Drawings Using Digitized Graphics Tablet data
set (Isenkul et al., 2014), HandPD data set (Pereira
et al., 2016), and Parkinson’s Drawings data set (Zham
et al., 2017)), were merged into a single data set composed
by 218 healthy subjects and 296 Parkinson’s patients.

4.2. Image preprocessing. We used the digitized
images, see Fig. 4, aiming to collect data from multiple
diverse sources such as digital table drawers, tablets,
paper scans and others, which allows us to develop a
more flexible model while avoiding overfitting. The
images were pre-processed for denoising, because the
paper scan images of spiral drawings have some noise
introduced by the paper scanning process and physical
paper texture captured by the scanner. We had the
paper texture removed and converted to a black-and-white
image, whereas the images from digital media had colors
inverted to have white background as in paper-based
images. Prior to the training process, the data passed
through a data augmentation step, where two operations
(rotation and resize) were made, while aiming to avoid
overfitting during the training process.

4.3. SqueezeNet model optimization. For the
selection of an optimal CNN architecture and its
meta-parameters, we used the method described by
Kalliola et al. (2021). The optimization was performed
with respect to the optimization functions, loss functions,
batch sizes, learning rates, dropouts, and validation
splits (see Table 2). The goal of the hyper-parameter
optimization method is to get a wide range of outcomes
and to look for relationships between those results and
hyper-parameter value combinations. The Bayesian
search methods were utilized. The top 10% of the
runs are examined for correlations between results and
hyper-parameters. The mean square error (MSE) measure
was utilized by the Bayesian search method to determine
the best performing hyper-parameter values. On the
testing set, MSE was computed as the difference between
predicted and target values.
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Table 2. Hyperparameter value ranges and categories in the optimization step.
Dropout Batch size Validation split Learning rate Optimizer Activation function Search
0–0.5 10–1000 0.05–0.2 0.0007–0.0011 Adam, SGD,

RMSProp, NAdam
reLU, elu, selu,
sigmoid, tanh

Bayesian

Random selec�on 
80%

Methods

Data

Training

Outputs

Training Dataset SqueezeNet 
Learning Trained model Classifica�on

Resize

RotateDataset

DDaattaa

Feature 
Extrac�on

Database 
features

Random selec�on 
80% SVM training

Training

Classifica�on

OOOuuutttpppuuutttsss

Fig. 3. Diagram description of development steps for the solution.

Fig. 4. Example of handwritten spiral images in the dataset
(blurriness is due to conversion from color to grayscale).

4.4. Feature extraction. In order to be used the
SqueezeNet model as a feature extractor, the output values
from the fire9 module of the neural network need to
be captured. To achieve it, we developed a method
named Hook, which can capture 512 features generated
at the output of the fire9 module of SqueezeNet, which
is illustrated in Fig. 5. It allows the capture of the
output values from this module and makes it possible
to create a new data set (matrix) of deep features with
class labels corresponding to the PD patient or health
subject, for supervised training. After the extraction of
the features from each image present in the data set, the
vectors are stored into a matrix of vectors M(n, 512),
where n represents the number of images in the data set.

The values in the matrix were then used for supervised
SVM training.

4.5. SVM training and classification. For the
supervised training of SVM, the features created during
the extraction phase were divided into two data sets,
training and testing. For the training process 80% of the
stored data were used, and 20% for testing.

The extracted features, for PD patient and Healthy
subject classes, were then used for SVM training with
linear, RBF and polynomial kernels. The performance
values were then compared with the performance of
other CNN classifiers, such as ResNet, VGG11 and
SqueezeNet, and with other ML algorithms applied to
classify the extracted features to establish the performance
of the proposed system in comparison with other methods.

For the selection of SVM hyperparameter values, we
have used the method described by Damaševičius (2010),
which uses the Nelder–Mead (or downhill simplex)
nonlinear optimization algorithm. The optimized SVM
hyperparameters were C (a trade-off between training
error and margin), Q (a maximum size of quadratic
programming sub-problems for SVM optimization), and
J (a cost-factor by which training errors on positive
examples outweigh errors on negative examples).

4.6. Performance evaluation. In order to evaluate
classification performance, we use accuracy, recall,
precision and F-score metrics. The metrics are commonly
used to evaluate classifier performance by many authors,
including multiple studies regarding Parkinson’s disease
recognition (Pereira et al., 2015; Ali et al., 2019).

Accuracy is the ratio of correctly classified data:

accuracy =
tp+ tn

tp+ fp+ tn+ fn
. (5)



556 L.S. Bernardo et al.

1.0 0.1 1.6 1.1 0.8 1.2 2.3 2.0 0.4

1.0 0.1 0.9 0.8 0.2 0.1 2.5 0.2 1.2

1.0 0.5 1.4 1.0 0.4 0.8 2.0 1.2 1.4

1.0 0.1 1.6 1.1 0.8 1.2 2.3 2.0 0.4

1.0 0.3 5.9 2.7 0.3 2.9 4.1 2.2 3.0

1.0 0.1 1.7 1.9 2.0 1.1 0.9 0 4.2

...

...

...

...

...

...

...
M(n,513)=

Class Feature vector

...

Input Class 1
(Parkinson)

Conv1 Maxpool/2 Fire1

Hook method

Maxpool/2 Fire9 Conv10 Softmax
(classification)

...

hook

Fig. 5. Illustration of feature extraction from the SqueezeNet deep learning model trained on the collected handwritten spiral data set.
Matrix M was created from extracting the vector features from the fire9 module.

Here tp is the number of true positives, tn is the number
of true negatives, fp is the number of false positives, and
fn is the number of false negatives.

Recall reveals the ratio of data correctly classified as
belonging to a class, from all data that truly belong to it,

recall =
tp

tp+ fn
. (6)

The precision value measures the amount of data that
were classified as belonging to a class, in relation to all
elements of the class,

precision =
tp

tp+ fp
. (7)

The performance measure that relates precision and recall
is called F-score, which is defined as follows:

F =
2× recall× precision

recall + precision
(8)

5. Results

For implementation, we used Colab GPU, with 13 GB
RAM on a computer with Ubuntu 18.04.3 LTS. Code was
implemented in Python 3.

The collected data set was used to obtain the trained
model. The training process of the SqueezeNet model
was performed for 12 epochs, until no improvement in
the model’s accuracy was observed. The learning rate
of a CNN has high importance to obtain a maximum
performance from the network (Raghavendra et al., 2018).
Aiming to establish the best learning rate of the CNN, the
data set was submitted for CNN training, and training was
interrupted when the smallest loss value was achieved,
from where the best learning rate was selected to be from
10−7 to 10−6.

To establish the performance of the proposed system,
it was compared with three other deep learning classifiers:
SqueezeNet (used as a standalone model without any
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Fig. 6. Distribution of healthy and Parkinson’s spiral features in
the data set extracted by SqueezeNet after feature dimen-
sionality reduction using t-SNE.

modifications), ResNet, and VGG11. Two characteristics
were used to compare the deep learning models: the
accuracy on the testing data set, and the time performance
of the training process (see Table 3). We used the
‘early stopping’ criterion to stop the training after the
performance starts declining during training. Although
all tested deep learning models achieved similar values of
accuracy, the time performance of the SqueezeNet model
was better. The extracted features from the Fire9 module
of SqueezeNet were plotted in the two-dimensional
space by applying the t-distributed stochastic neighbor
embedding (t-SNE) (van der Maaten and Hinton, 2008) in
order to have a visual representation of how the features
of each class were distributed (see Figure 6). To explore
the performance of SVM, kernel functions were applied
to obtain maximum performance from the SVM model
that was initialised with a random state of 109. For SVM
kernels, we used the following values of regularization
factor C (all kernels), variance σ (only RBF kernel) and
degree d (only polynomial kernel), which are important
in selecting an optimal hyperplane: C = 1, σ = 3, and
degree d = 3.

To validate the results obtained from the testing
process of SVM, the 10-fold cross validation was applied.
For each model the accuracy, precision and F-score
metrics were calculated. From the three kernels applied,
the linear kernel presented better performance as shown in
Table 4.

To compare the efficiency of SVM to perform
classification on deep features learned by the SqueezeNet
deep learning network, the features extracted from
SqueezeNet were submitted to two other ML classifiers:
RF and GNB, and 10-fold cross validation was used
to evaluate the efficiency of the proposed method.
To establish the best algorithm for the considered

problem, three supervised models (SqueezeNet + GNB,
SqueezeNet + RF and SqueezeNet + SVM (proposed))
were trained, and performance measures (F-score,
precision, accuracy and recall) were calculated and
presented in Table 5, where SVM had achieved the best
performance.

The proposed hybrid method had a better accuracy in
comparison with other deep learning methods (standalone
SqueezeNet, ResNet and VGG1), achieving 91.26%
accuracy, being followed by ResNet, which shows an
accuracy of 89.22%, achieving the closest performance to
the proposed method (see Table 6).

6. Conclusions and future work

The hybrid SqueezeNet and SVM classification method
presented in this paper shows how powerful deep learning
and machine learning tools can be used together aiming
to help on the diagnosis of a disease that affects millions
of people worldwide, being a valuable solution for future
works that also aim at the diagnosis of Parkinson’s disease
(PD). Based on the achieved results, the proposed system
can serve as a viable solution to assist the process of
diagnosis of the PD, offering an accurate (we achieved
an accuracy of 91.26%) and fast result in the process
of handwritten spiral image classification, being able to
process the provided data in seconds.

Moreover, our proposed system was evaluated on
a heterogeneous data set of handwritten spiral images
obtained from different sources (digital, paper-based)
which offers flexibility in the disease recognition, while
other works use homogeneous image data sets for
evaluation, leading to overfitting. Despite this advantage,
a limitation of the work is that the data set used for
training the models is still small compared with the data
sets used for other biomedical applications. Collecting
more own data and adding externally derived data sets
to increase our data set and re-evaluate the models on
the larger data set will be a subject of our future work.
Despite the advances in understanding the PD and the
appearance of more precise computer techniques aiming
at its diagnosis, the studies in this field are still in the
early stages to provide a definitive computer aid tool
to achieve an accurate diagnostics of the PD. However,
new techniques based on deep learning offer a light to
guide future works and development of tools that in the
future will offer a definitive solution to the automated PD
diagnosis process.
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de Ipina, K.L., Solé-Casals, J., Faúndez-Zanuy, M., Calvo,
P., Sesa, E., Roure, J., de Lizarduy, U.M., Beitia, B.,
Fernández, E., Iradi, J., Garcia-Melero, J. and Bergareche,
A. (2018). Automatic analysis of Archimedes’ spiral
for characterization of genetic essential tremor based
on Shannon’s entropy and fractal dimension, Entropy
20(7): 531.

Espay, A.J., Bonato, P., Nahab, F.B., Maetzler, W., Dean, J.M.,
Klucken, J., Eskofier, B.M., Merola, A., Horak, F., Lang,
A.E., Reilmann, R., Giuffrida, J., Nieuwboer, A., Horne,
M., Little, M.A., Litvan, I., Simuni, T., Dorsey, E.R.,
Burack, M.A., Kubota, K., Kamondi, A., Godinho, C.,
Daneault, J.-F., Mitsi, G., Krinke, L., Hausdorff, J.M.,
Bloem, B.R. and Papapetropoulos, S. (2016). Technology
in Parkinson’s disease: Challenges and opportunities,
Movement Disorders 31(9): 1272–1282.

Gallicchio, C., Micheli, A. and Pedrelli, L. (2018). Deep
echo state networks for diagnosis of Parkinson’s disease,
26th European Symposium on Artificial Neural Networks,
ESANN 2018, Bruges, Belgium, pp. 397–402.



A hybrid two-stage SqueezeNet and support vector machine system . . . 559

Table 5. Comparison of hybrid classifier performance. Best results are shown in bold.
Algorithm Accuracy Precision Recall F-score (with std. dev.)

SqueezeNet + GNB 0.8252 0.8261 0.8053 0.8123 (+/- 0.17)
SqueezeNet + SVM (proposed) 0.9126 0.9200 0.8985 0.9067 (+/- 0.13)

SqueezeNet + RF 0.8738 0.8728 0.8621 0.8665 (+/- 0.17)

Table 6. Comparison of performance values of the proposed hybrid method and other deep network models. Best results are shown in
bold.

Method Accuracy Precision Recall F-Score (with std. dev.)
SqueezeNet+SVM 91.26% 92.00% 89.85% 90.67% (+/- 13.07%)

SqueezeNet 85.29% 87.27% 85.71% 86.49% (+/- 14.26%)
ResNet 89.22% 86.89% 94.64% 90.60% (+/- 11.82%)
VGG11 87.25% 86.44% 91.07% 88.70% (+/- 13.84%)

Garre-Olmo, J., Faúndez-Zanuy, M., de Ipiña, K.L.,
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Rytis Maskeliūnas received his PhD degree
in computer science in 2009. He is currently
a professor with the Department of Multimedia
Engineering, Kaunas University of Technology,
Lithuania. He is the author or a coauthor of more
than 180 refereed scientific articles and serves
as a reviewer/committee member for various ref-
ereed journals. His main areas of scientific re-
search are multimodal signal processing, mod-
eling, development and analysis of associative,

multimodal interfaces, mainly targeted at the elderly and people with
major disabilities. He has won various awards/honors, including the Best
Young Scientist Award of 2012, the National Science Academy Award
for Young Scholars of Lithuania in 2010, and others.

Received: 1 January 2021
Revised: 9 May 2021
Accepted: 5 September 2021


	Introduction
	Related works
	Theoretical foundations
	Archimedean spiral
	Convolutional neural network
	SqueezeNet
	Support vector machine

	Methods
	Data set
	Image preprocessing
	SqueezeNet model optimization
	Feature extraction
	SVM training and classification
	Performance evaluation

	Results
	Conclusions and future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




