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a b s t r a c t

Polysulfone (PES) membranes are among the rare membranes that are capable of double

filtration: a pre-filter layer captures agglomerates and a thin-dense layer is responsible for

the main separation process. This work aims to enhance the permeability and H2/N2 and

CH4/N2 of the dense layer of PES by mixing it with low concentrations of carbon nanotubes

(CNTs: 0.01e0.03 wt.%) using solution casting and doctor blade techniques. The pore to-

pology, microstructure, chemical, thermal, and mechanical properties of the synthesized

CNTs/PES membranes were investigated using FTIR, XRD, TGA, and a universal testing

machine, while permeability of single CO2, H2, N2, and CH4 permeability of the CNTs/PES

membranes were tested under different temperatures (20e60 �C) and pressures (1e6 bar).

Also, the effect of added CNTs, separation temperature, and pressure on the gas separation

mechanism were investigated. The results showed that adding of CNTs contributed to

increase in porosity from 81.7% (PES) to 88.4% (CNTs/PES) and decrease in pore sizes from

84 nm (PES) to 50 nm (CNTS/PES). Meanwhile, the thermal and mechanical analysis showed

that CNTs/PES membranes had higher thermal stability and somewhat lower strength

compared with neat membranes. Also, the permeability measurements showed a big in-

crease when only 0.01 wt.% of CNTs had been added, where H2, CH4, N2, CO2 permeabilities

were increased up to 28,553, 11,358, 7540, 6720 Barrer, respectively, vs 10.4, 4.6, 13.7, and

12.3 Barrer in case of PES membranes. In addition, CO2/N2, CH4/N2, and H2/N2 selectivity of

CNTs/PES membranes were enhanced by 29%, 396%, and 426%, respectively, as a result of

pores refining and increasing of free space in the prepared CNTs/PES membranes. Ac-

cording to these results, CNTs/PES membranes with small loading of CNTs have a
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tremendous ability to deal with separation of H2/N2 and CH4/N2, what make them prom-

ising candidates for clean energy extraction applications.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, the demand and investments in the production of

polymer membranes have increased significantly and this

method has been adapted as an emerging technology in

many fields, including water treatment, oil separation, en-

ergy, protein extraction, etc. Because of unique porous

structure of polymer membranes, ease of operation and

installation, cheapness, and big separation efficiency, when

compared to other methods (e.g., amino technology) [1e3]. All

these advantages served as a strong motivation to employ

polymer membranes technology in gas separation that was

facing the terrible increment in environmental challenges,

including carbon emissions [4,5]. Also, due to high perme-

ability and selectivity, it has been used in biogas purification

and upgrading [6]. Despite the tremendous success of mem-

branes in gas separation and biogas upgrading at the labo-

ratory level, the membrane fouling represents one of the

major challenges, which appears when the method is applied

at industrial scale, because feeding gas usually contains large

particles and agglomerates leading to clogging of the porous

structure of membranes, reduction of the method's efficiency

and lifetime [7,8].

In order to address these limitations, the membranes with

double filtration stages were developed. These types of

membranes are composed of two layers: thick and dense

layers. The thick layer has bigger pores in the range of

5e20 mm and acts as a pre-filter stage to capture large ag-

glomerates and particles [9]. Also, this layer plays an impor-

tant role in preventing the passage of large particles, which

can help to prevent clogging of the porous structure of the

membranes. Meanwhile, the thin-dense layer used as an ul-

trafiltration stage can be used for gas separation with smaller

particles [10]. Polysulfone (PES) membrane is one of these

membranes that have the property of double filtration and it

has been recently used in gas separation with high selectivity

[11,12]. Based on the pore size of PES membrane, Knudsen

diffusion approach is applied for the gas separation mecha-

nism, assuming that the gas separation is possible because

molecules frequently collide with the pore wall [13,14]. Also,

Kamble et al. (2020) measured the CO2/N2 and CO2/CH4

selectivity of PES membranes at room temperature and low

pressure (0.5e1.5 bar) for potential applications in biogas

upgrading [15], where biogas was usually composed of

numerous gases (e.g., CO2, N2, etc.) mixedwith the flammable

gases (H2 and CH4), thus affecting negatively the performance

and economic value of this energy product and the separation

process [16,17]. The agglomerates, nitrogen and carbon are

considered to be the main contamination sources in biogas

and these particles tend to clump together as a result of the

force of attraction between particles gases, what leads to
formulation of many agglomerates particles and causes

serious piping problems, such as corrosion [18e20].

Therefore, PES nanocomposite membranes were intro-

duced to overcome these problems. In case of such mem-

branes, the main substance was mixed with different types of

inorganic fillers to overcome the above-mentioned limitations

to a large extent. In addition, the chemical, thermal, perme-

ability, selectivity performance of the PES nanocomposite

membranes were improved. Also, these fillers can reduce

membrane fouling, as well. In the literature, there are various

types of filler materials used for that purpose, such as SiO2,

ZnO, Ag, graphene nanoparticles, carbon nano-fibre (CNF),

carbon nanotubes (CNTs), etc. [9,21e24]. Among all these

fillers, CNTs demonstrated a distinctive performance in gas

separation, water treatment, oilewater mixture separation,

etc. It was achieved because of their unique structure, as they

consist of hollow tubes with an inner diameter lower than

<100 nm that allow passage of smaller particles within ultra-

filtration or nanofiltration scope [25e28]. Also, it was man-

ifested that addition of CNTs was sufficient to cause

fundamental changes in the membrane morphology and that

CNTs are promising materials as absorbents or inorganic

fillers for membranes. Also, the incorporation of CNTs to PES

membranes could have caused fundamental changes in the

membrane morphology. In addition, CNTs are promising

materials as absorbents with good chemical, thermal, and

mechanical properties that can be used to enhance the main

physical and chemical properties of the membranes [29e32].

In the literature, several old studies, howCNTs improve the

selectivity and permeability of PES membranes were found.

The experiments were performed by loading CNTs in the

range of 0.5e10 wt.% [33,34]. Also, these studies were focused

on studying CO2/N2 and CO2/CH4 selectivity and the results

showed that the highest CO2/N2 and CO2/CH4 selectivity can

be achieved at 5 wt.% and 0.5 wt.% of CNTs, respectively.

Although the results showed that the separation process

became more efficient, but still these results are are doubtful,

especially as the modern studies showed that at lower con-

centrations of CNTs (<0.1 wt.%), a uniform dispersion can be

achieved, avoiding any agglomeration, thus improving

permeability of the membranes [35,36], while at higher per-

centage, CNTs started to agglomerate, thus clogging the pores

of membranes and eliminating the high area-to-volume ratio

characteristics and obstructing the gas transportation

through the synthesized membranes, leading to decrease in

the lifetime of membranes and high operating costs [37]. Also,

the selectivity was measured at room temperature and at

constant pressure (3 and 4 bars) without paying any attention

to their impact on performance. Within this context, this

research aims to enhance the permeability of PES by mixing it

with a small amount of CNTs (0.01, 0.02, and 0.03 wt.%) and
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investigates their potential applications in gas separation and

carbon capture. Also, the possibility of using the prepared

membranes in H2 and CH4 separationwas studiedwith regard

to the unconventional natural gas upgrading systems, espe-

cially when these gases were characterised as having a high

energy transferring efficiency with smaller emission and

being cheaper [38,39]. The experiments in the present work

started with the preparation of CNTs/PES films with different

concentrations of CNTs using a solution casting route and a

doctor blade approach. Subsequently, the physical, chemical,

morphological, thermal, and mechanical properties of the

synthesized membranes were analysed. After that, H2, CH4,

N2, CO2 permeabilities of the prepared membranes were

measured at 20e60 �C and 1e6 bar. Finally, CO2/N2, CO2/H2,

CO2/CH4, CH4/N2, and H2/N2 selectivity of CNTs/PES mem-

branes was estimated.
2. Experimental

2.1. Materials

Polyethersulfone pellets (PES: with molecular weight of

75,000 g mol�1), Polyvinylpyrrolidone (PVP), Dimethylforma-

mide (DMF), and other reagents (sulfuric acid (H2SO4), nitric

acid (HNO3), etc.) were supplied by SigmaeAldrich. Carbon

nanotubes (CNTs) with average diameter of 25 were synthe-

sized using a CVD device [40]. Then they were exposed to

chemical functionalization process in order to remove the

impurities and amorphous carbon, and to modify the surface

of the synthesized CNTs. The functionalization process star-

ted with oxidizing CNTs at 170 �C in a mixture of H2SO4 and

HNO3 (w/w 3:1) for 60 min, then washing the filtrated powder

and drying at 60 �C for overnight [41]. Finally, CO2, N2, H2, and

CH4 gases with purity �99.99% were supplied by the Lithua-

nian Energy Institute, Lithuania.

2.2. Design of the research experiments

The experiments in the current work were developed in four

phases: a) preparation of the PES nanocomposite membranes

with different concentrations of CNTs (0.01wt.% “CNTs/PES1”,

0.02 wt.% “CNTs/PES2”, and 0.03 wt.% “CNTs/PES3”), b) phys-

ical, chemical, microstructural, thermal, and mechanical

characterizations of the fabricated membranes, c) gas sepa-

ration measurements, and d) gas separation mechanism. All

these phases, including their optimum conditions, are

explained in detail in the following sections.
Fig. 1 e Preparation stages o
2.3. Fabrication of PES nanocomposite membranes

Fig. 1 shows the preparation stages of CNTs/PES membranes

used in the present research. As shown in the layout, the

phase-inversion technique was used to fabricate PES mem-

branes and their nanocomposite with different concentra-

tions of CNTs (0.01, 0.02, and 0.03 wt.%). The fabrication

process startedwith the preparation of PES solution bymixing

14 wt.% of PES pellets and 1 wt.% of PVP in DMF solvent. Af-

terwards, CNTswere added to themixture andmixed together

using a magnetic stirrer at 50 �C for 6 h, then mixed again for

1 h under the effect of soundwave at 50 �C, thus preparing the

CNTs/PES solutions with a uniform distribution (Fig. (1A)). In

order to prepare the CNTs/PES membranes with a uniform

thickness (~100 mm), ZAA 2300-automatic film applicator with

a casting knife was employed to cast the doping solution on a

glass substrate at 20mm/s (Fig. (1B)). Then the glass plate with

CNTs/PES film was subsequently immersed into DI water in a

coagulation bath for 15 min at 75 �C for drying process

(Fig. (1C)); then the CNTs/PES films were peeled off the glass

substrate and dried again in a vacuum oven at 27 �C for

overnight. In order to remove the residual solvent, the dried

films were kept in pure water all day long, thus preparing the

final CNTs/PES membranes with surface area of

220 mm � 170 mm, as shown in Fig. (1D). Finally, the me-

chanical samples (length of 100mmandwidth of 10mm)were

cut from the prepared sheets using a shaper cutter for me-

chanical measurements. Also, round shapes with diameter of

60 mm were cut from sheets for gas permeability measure-

ment, as shown in Fig. (2).

2.4. Membrane characterizations

The scanning electronmicroscope (SEM) was used to examine

the dispersion of CNTs in the prepared membranes. Also,

surface and cross-section morphology of CNTs/PES mem-

branes was observed using SEM. The capillary flow porometer

(Porometer 3G zh, Quantachrome, Anton Paar GmbH, Ger-

many) was used to determine the pore sizes of the prepared

membranes and to check their integrity in the liquid solution

followed by drying on the holder [42]. The porosity of CNTs/

PES membranes and their pore size were measured by using

mercury intrusion porosimetry (MIP, Pascal 440 Evo, Thermo

Scientific) based on the following conditions: Pressure

(400MPa), temperature (21 �C),mercury density (13,439 g/cm3),

and filling volume (450mm3). The chemical structure of CNTs/

PES membranes and their functional groups was analysed

using the X-ray crystallography (XRD) and Fourier-Transform
f CNTs/PES membranes.
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Infrared spectroscopy (FTIR). Meanwhile, the mechanical

properties of the prepared CNTs/PES membranes were

measured using the Lloyd Universal Testing Machine (model

LR10K) at 5 mm/min. In addition, the thermal decomposition

of the synthesized CNTs/PES membranes was analysed in

nitrogen atmosphere at 20 �C/min using Thermogravimetric

analysis (TGA-DTG) up to 900 �C.

2.5. Gas permeation measurements

The gases (CO2, H2, N2, and CH4) permeation measurements

were carried out at different temperatures (20, 40, and 60 �C)
and different absolute pressures in the range of 1e6 bars using

the permeation apparatus shown in Fig. (3A). It is clear that

the apparatus contained sources of gases, a membrane

permeation module, and a gas measurement system. As

shown in the figure, the setup consisted of different sources of

gases (CO2, H2, N2, and CH4) to be able to control their flow

rate and pressure using regulators/transducer. The mem-

brane permeation module in the form of circular block was

composed of two flanges, a tight sealing system with rubber

O-rings, and a porous thin metal disc with total porous area of

2.88 cm2 (used as a support wall for the tested CNTS/PES

membranes). In order to measure the permeability of the

selected gases, the round CNTs/PES membrane was tightly

enclosed into the membrane permeation module, the mem-

branes were held in vacuum for approximately 3 min to reach

a steady state, and then exposed to selected gas at a specific

temperature and pressure.
Fig. 3 e (A) Scheme of the set-up used in gas permeation meas

membranes after testing.
Finally, the volumetric flow rate measurements of perme-

ated gases (CO2, H2, N2, and CH4) were collected using a soap

bubble flowmeter. Finally, the gas permeability (Pi,j) and

selectivity were determined by Eq. (1) and (2); all parameters

are defined in Table 1 [43]. In order to improve the results’

accuracy, the gas experiments of each gas were performed

three times and the average measurements were recorded.

Pi;jðBarrerÞ¼
Qi;j

A ð cm3

s: cm2Þ x l ðcmÞ
DP ðcmHgÞ (1)

ai=j ¼ Pi

Pj
(2)

3. Results and discussion

3.1. Morphology of the synthesized CNTs/PES
membranes

In order to prepare the SEM sample, small pieces of mem-

branes were cut from each batch and immersed into liquid

nitrogen for a few minutes until the samples hardened. After

removal from the liquid, the samples were broken, the frac-

ture's surface was cleaned and coated with a gold layer to

increase their conductivity. Fig. 4 shows the features of the

microstructure's cross-section and porous structure of the

fabricated PES and CNTs/PESmembranes. The cross-sectional

SEM micrographs of PES sample (Fig. (4A)) show that the
urements and (B) Image of the prepared CNTs/PES
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Table 1 e Parameters of gas permeability (Pi,j) and
selectivity.

Parameters Definition

Pi Permeation coefficients of CO2

Pj Permeation coefficients of N2 or H2

or CH4

ai=j Ideal selectivity of CO2 and N2 or H2

or CH4

Qi Gas flux through the membrane

A Effective area of the membrane

l Membrane thickness

s Solubility of CO2, N2, H2, and CH4

DP Pressure change
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membrane is composed of porous and dense layers formed

during the solidification process, drying, and solvent evapo-

ration as a result of fast solventenon-solvent exchange in the

interface of the casted films followed by generation of repul-

sive forces between the fabricated films and DI water, hence

leading to immediate deposition of the PES molecules at the

interface and creation of the dense layer [44]. It seems that the

porous layer is characterized by big thickness and high

strength, if compared with the dense layer. This porous layer

was used during the separation process as a pre-filter stage to

capture larger particles and agglomerates, while the thin layer

acted as a main filtration layer for gas separation based on

molecule sizes [45].

Although all membranes have almost the same features,

including porous and dense layers and pores, these features

changed a little by adding CNTs of different concentrations.

For example, the porous layer in PES sample contained big

pores with a size up to 50 mm, while the size of these pores

began to increase significantly by adding CNTs to the matrix

due to the expansion of the pores and their tendency to stick

together as shown in the porous layer in Fig. (4B-D). The same

features appeared in the pores in dense layers with some

refining in the surface of pores Fig. (4A1-D1), where addition of

CNTs to the matrix lad to restricted conformational freedom

of PES chains and prevented the PES chains from joining

together during the solidification process, which resulted in
Fig. 4 e Cross-sectional SEM photos of (A) PES (B) CNT
curvature on the surface at the microscale, followed by

reduced crystallinity of the membrane and increase in

amorphous and free volume fraction, which aided trans-

portation of gases through the membranes [46,47]. In order to

determine the size of these pores generated on dense layers

and their porosity, the pore size distribution measurement

was performed, as illustrated in the next section.

3.2. Pore size distribution

Since it was difficult to measure the pore size in the mem-

branes manufactured with SEM precisely, the pore size dis-

tribution using a capillary flow porometer was measured. The

measurements showed that PES membrane had bigger pores

in the range of 84 ± 9 nm, while the measurements of PES

membrane modified by CNTs revealed smaller pores located

in the range of 50e70 nm depending on the concentration of

CNTs in the prepared matrix, where the pores became very

fine and smaller, especially at high loading of CNTs. These

results agree with the results in literature [31,32]. Besides, the

porosity of the neat membrane increased by adding 0.03 wt.%

of CNTs from 81.7% to 88.4% and these results are confirmed

by the membrane morphology. Having refined the pores by

adding CNTs, the neat and modified membranes were classi-

fied as ultrafiltration membranes characterized by porosity

(<0.1 mm) [48].
3.3. Chemical composition of the synthesized CNTs/PES
membranes

The crystallinity of polymers is one of the key factors that

has significant effect on gas transport properties through the

membranes, where gas permeation through the membranes

can happen in the amorphous stage or through the in-

terstices between crystallites as a result of increased free

space convenient for diffusion and the winding path around

the crystallite [49]. XRD was used to examine the effect of

CNTs addition on the crystallinity of membranes. Fig. (5A)

shows XRD spectra of CNTs/PES membranes with different

loadings of CNTs in the range of 0e0.03 wt.%. It is clear that
s/PES1 (C) CNTs/PES2 (D) CNTs/PES3 membranes.

https://doi.org/10.1016/j.jmrt.2021.10.125
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Fig. 5 e (A) XRD and (B) FTIR analysis of the fabricated CNTs/PES membranes.
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the neat membrane sample (PES) is mainly amorphous with

only sharp peak at around 2q ¼ 13.7� and these results agree

with the results of pure polyethersulfone polymer [50]. After

adding CNTs, it seems that no significant change in the

sharp peak in XRD spectra was observed between the PES

sample and the CNTs/PES samples, all of them having

almost the same intensity. Although the amount of filler

used in the research was very low and difficult to detect with

XRD, a new reflection peak with very low intensity at 28.7�

appeared and was assigned to CNTs phase of 0 0 2, 1 0 0 and

0 0 4 lattices, which means that addition of CNTs into PES

subtract manifested a new amorphous structure. At higher

CNTs concentrations (0.03 wt.%), the sharp peak at (13.7�)
shifted slightly to higher angles with increasing CNTs load

(14.3�), which confirmed the alteration of the average inter-

segment spacing of PES chains and introduction of freer

volume in the fabricated nanocomposite membranes [24],

hence possible of increasing gas permeation performance

through the membranes.

Fig. (5B) shows the FTIR spectra of the CNTs/PES nano-

composite membranes. As shown in the results, the FTIR

spectrum of the tested membranes exhibited several broad

absorbance peaks: at 558 cm�1 corresponding to SO2 scissors

deformation, 1150 and 1170 cm�1 attributed to SO2 symmetric

stretch, 1240 cm�1 corresponding to Aryl-O-aryl CeO stretch,

1300 and 1328 cm�1 attributed to SO2 asymmetric stretch,

1725 cm�1 and 1663 cm�1 corresponding to the carbonyl group

(-C]O) in the lactic acid groups, 1570 cm�1 and 1482 cm�1
Fig. 6 e A) Images of mechanical samples, B) StresseStrain curv

CNTs/PES membranes.
attributed to C]C skeleton in aromatic ring, and 1097 cm�1

attributed to eCeO stretching vibration of the lactic acid

groups, and 3000e3200 cm�1 related to Aromatic CH stretches

[42]. It seems that the FTIR spectra of CNTs/PES samples are

similar to PES membrane FTIR results, with a new peak with

low intensity appearing at 1995 cm�1 due to a carbonyl group

produced by a double bonded carbon and oxygen (C]O),

which corresponds to CNTs [24]. The presence of carbonyl

group confirms that CNTs incorporated in the PES matrix has

improved the free space region.

3.4. Mechanical behaviour of the synthesized CNTs/PES
membranes

Fig. (6A-C) shows images of the preparedmechanical samples,

stressestrain curves, and the measured mechanical data of

the prepared CNTs/PES membranes samples, respectively. As

shown in the stressestrain curves, PES sample had bigger

strength (2.63 ± 0.18 MPa), strain (6.4 ± 0.27%), and elasticity

modulus (200 ± 12.58 MPa) compared with nanocomposite

samples. Having added CNTs to the PES matrix, all these pa-

rameters decreased significantly because of increase in the

amorphous phase structure of PES and increased free volume

of PES chains, as explained in XRD and FTIR results [44,51].

These free volume features in the form of pores (as shown in

SEM photos Fig. (4)) acted asmicro-cracks inside the CNTs/PES

membranes, thus leading to decrease in the size of actual solid

cross-section area of CNTs/PES membranes and merging
es and C) StresseStrain values of the synthesized PES and

https://doi.org/10.1016/j.jmrt.2021.10.125
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together under the applied load, what could make it easier to

destruct them under the applied load and reduce their me-

chanical performance.
3.5. Thermal behaviour of the synthesized CNTs/PES
membranes

Fig. 7 displays TGA curves of CNTs/PES membranes and their

decomposition phases in terms of weight loss in each

decomposition stage. As shown in the figure, the TGA curves

showed that PES and its nanocomposite can decompose in

three stages in the temperature range from 25 to 900 �C with

a total weight loss estimated at 57e65 wt.% (depending on

the concentration of CNTs in the prepared matrix). The first

stage is responsible for removal of moisture and solvent

residue evaporation in the temperature range of 25e360 �C. It
was evident that all the tested samples had almost the same

features in this zone with very small weight loss (1.2 wt%). It

was due to the successful preparation process of membranes

by removing of all of these components during the drying

process [42].

With regard to the second degradation stage (main

decomposition zone), it was composed of two main decom-

position components in all the tested samples. The first

sector in this zone corresponded to the random-chain

disengage mechanism of the basic PVP chain with weight

loss in the range 8e11 wt.%, while the second sector referred

to decomposition of PES in the range (456e610 �C) with

weight loss estimated at 47e36 wt.% [52]. The final decom-

position phase represented char and ash formation in the

range (611e900 �C) at the end of reaction. It is clear that PES

sample had lower thermal stability in terms of total weight

loss (65 wt.%), while CNTs/PES membranes had higher ther-

mal stability, especially at 0.02 wt.% of CNTs (55 wt.%) with

improvement of 15%. These results agree with the results in

the literature, which proves that nanofiller inorganic,

including CNTs can be used to improve thermal stability of

thin films [53,54].
Fig. 7 e TGA analysis of the synthesized PES and CNTs/PES

membranes.
3.6. Evaluation of gas permeabilities

Fig. (8A-D) shows the permeation measurements of CO2, N2,

H2, and CH4 gases of the synthesized PES membrane and its

nanocomposite (CNTs/PES1, CNTs/PES2, and CNTs/PES3)

using a gas separation test rig under different feed pressures

(1e6 bar) and different temperatures (20, 40, and 60 �C). For
simplicity, in all figures and samples, solid, dotted, and

dashed curves indicate the permeationmeasurements of CO2,

N2, H2, and CH4 gases at 20 �C, 40 �C, and 60 �C, respectively.
Also, and due to the significant difference in gas permeabil-

ities of neat and nanocomposite membranes, the primary

axes (left vertical axes) were allocated to the permeabilities of

PES membrane, while the secondary axes (right vertical axes)

were allocated to the permeabilities of CNTs/PES membranes.

Fig. (8A-D) shows H2, CH4, N2, CO2 permeabilities of PES

and CNTs/PES membranes under the specified testing condi-

tions. It is clear that gas permeabilities of PESmembranes had

the following tendency: N2 (10.5e15.4 Barrer) > CO2 (8.8e14.2

Barrer) >H2 (8.4e12.1 Barrer) > CH4 (3.4e5.6 Barrer) because of

the difference in the size of themolecules of these gases in the

range of 2.4e3.8 �A, where smaller gas molecules pass faster

and freely through the pore channels, compared with larger

gas molecules [55]. Also, the separation using these types of

these polymeric membranes is governed by two main pa-

rameters, gas molecule size as listed before and polymer

adsorption or capture of gases [56]. Besides the high ability of

CNTs to absorb CO2 and some other gases, which leads to

changing the permeability trends [57]. In addition, it seems

that H2, CH4, N2, CO2 permeabilities increased gradually with

increase of the applied pressure and temperature due to the

plasticizing of the membranes and increase in their polymer

matrix chain flexibility. Besides, the increase of temperature

led to enhanced kinetic energies in the molecules of these

gases, thus increasing their permeabilities [58]. However,

some variation in gas permeabilities were observed with the

change of temperature due to two main reasons; the first re-

lates to plasticization effect in the tested PES under the

applied temperature, while the second reason relates to the

behaviour and characters of the tested gas that changes with

the applied heat. Where the temperature of the gas is directly

proportional to its pressure [59], which means that at 20 �C,
the gas pressure in the membrane permeation module

(Fig. (3)) is relatively low and increases at 40 and 60 �C. Where

at the higher temperature the particles of gas in the module

moving with a greater energy, what lead to more collisions

randomly with each other and the sides of the testing module

and hence the pressure is increased [60]. Therefore, obtained

some variation in the results as a results of these randomly.

In case of CNTs/PES membranes, it was observed that CO2,

N2, H2, and CH4 permeabilities had increased significantly

with regard to all nanocomposite membranes, which means

that addition of CNTs to PES matrix would enhance its

permeability in general by increasing diffusivity even at low

concentration of CNTs (0.01e0.03 wt.%). So, addition of CNTs

leads to disrupting the PES chains and increase in the void

volume of the membranes, thus producing more unbound

places, which helps to transport gases easily through the PES

chains [61]. Also, it was noted that the gas permeabilities
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Fig. 8 e Effect of applied pressure and temperature on A-D) CO2, N2, H2, and CH4 permeabilities of the synthesized PES and

CNTs/PES membranes, respectively.
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increased gradually with increase in pressure and tempera-

ture, similarly to the neat membranes. However, in case of

CNTs/PES2 sample, it was observed that the permeability of

that sample was very low compared with CNTs/PES1 and

CNTs/PES3 samples because of uniform distribution of CNTs

in the sample, hence increasing the crystallinity degree of the

matrix with partial alignment of their molecular chains and

forming lamellae regions impeding transportation of gas

through the membranes [62]. Meanwhile, the random distri-

bution of CNTs in the prepared matrix led to decrease in

crystallinity degree of CNTs/PES1 and CNTs/PES3 membranes
Fig. 9 e The average CO2, N2, H2, and CH4 permea
followed by improvement in their porosity due to disruption

of the PES chains, thus increasing gas permeabilities. Also, by

adding CNTs to PES polymer, the matrix chain gained more

flexibility, thus increasing the permeability significantly,

especially at high temperature and pressure.

In order to facilitate the comparison process between the

permeabilities of the neat and CNTs/PES membranes, the

average (H2, CH4, N2, CO2) permeabilities of all measured

values (at 1e6 bar and 20e60 �C) for each batch were calcu-

lated and used as a single value during the comparison pro-

cess. All average H2, CH4, N2, CO2 permeabilities for PES and
bility values of PES and CNTs/PES membranes.
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CNTs/PESmembranes are summarized in Fig. (9). According to

Fig. (9), CNTs/PES1 and CNTs/PES3 membranes have the

highest permeabilities of all gases with high values compared

with the neat sample with the following tendency: H2 (28,553

Barrer) > CH4 (11,358 Barrer) > N2 (7540 Barrer) > CO2 (6720

Barrer) vs 10.4, 4.6, 13.7, and 12.3 Barrer, respectively in case of

PESmembranes. As shown, CNTs/PESmembranes have ultra-

permeabilities of H2, CH4, N2, CO2 gases compared with PES

membranes. These results have a great potential when

compared with those reported in the literature, which were

used with high concentration of CNTs (0.5e10 wt.%) [33,34];

even PES membranes were enhanced by another types of

fillers [15,63]. The result demonstrates that the CNTs/PES

membranes with low concentration of CNTs exhibited high

permeability.

3.7. Evaluation of gases selectivity

At present, polymer membranes are widely used in several

fields, including carbon blocking, natural gas purification,

biogas upgrading, etc. [22,42]. In order to determine the

appropriate applications of the developed CNTs/PES mem-

branes, the selectivitywas calculated for all gases using Eq. (2),

then identifying potential applications based on the obtained

selectivity. Looking at researches and current challenges, two

main applications were taken into account: a) CO2 separation

for environmental applications and b) CH4/N2 and H2/N2

separation for clear energy applications. Based on that, this

sectionwas focused on these two topics. Also, this sectionwas

divided into two parts: the first part was focused on evaluation

of CO2/N2, CO2/H2, and CO2/CH4 selectivity for carbon sepa-

ration applications, while the second part was focused on

evaluation of CH4/N2 and H2/N2 selectivity for clean energy

applications.

3.7.1. CO2 separation applications
Fig. (10A-C) shows the effect of adding CNTs at tested tem-

peratures (20, 40, and 60 �C) and pressures (1e6 bar) on the

ideal CO2/CH4, CO2/N2, CO2/H2, and CO2/CH4 selectivity of

the prepared PES and CNTs/PES membranes. In these figures,

the primary axes were allocated to the selectivity of PES

membrane, while the secondary axes were allocated to the

selectivity of CNTs/PES membranes. It clear that CNTs/PES

membranes have higher CO2/N2 ideal selectivity than neat

sample with improvement of 29%. This is due to larger free

spaces in CNTs/PES membranes acting as a strong CO2

adsorbent, hence helping the CO2 permeability over N2 gas in

the tested membrane. This result is almost similar to the re-

sults obtained by Kamble et al. (2020), when PES was mixed

with 2D materials and ionic liquid [15]. Also, the selectivity

was increased with increase of the tested temperature and

pressure. CNTs membranes manifested a very weak CO2/H2

and CO2/CH4 selectivity (0.3 and 0.4%) compared with PES

membranes. All average selectivity values (for all measure-

ment at 1e6 bar and 20e60 �C) of PES and CNTs/PES mem-

branes are shown in Fig. (10D). Based on these results, CNTs/

PES membranes with low CNTs content are recommended in

case of CO2/N2 separation with ultra-permeability and high

selectivity.
3.7.2. Clean energy applications
Fig. 11 shows the effect of adding of CNTs at tested tempera-

tures (20e60 �C) and pressures (1e6 bar) on CH4/N2 and H2/N2

selectivity of the prepared PES membranes. It clear that the

selectivity of CH4/N2 and H2/N2 of PES and CNTs/PES mem-

branes proved a rapidly growing tendency up to 6 bars (PES)

and 4 bars (CNTs/PES). However, PES membranes provided

lower CH4/N2 and H2/N2 selectivity with average values of

0.33 and 0.76, respectively. As the content of CNTs increased

up to 0.01 and 0.03 wt.%, CH4/N2 and H2/N2 selectivity was

further increased up to 1.62 and 3.95. These significant results

of CH4/N2 and H2/N2 selectivity were obtained due to the

increased free volume and molecular space, enhanced CH4

and H2 permeabilities, and smaller kinetic diameters, H2

(0.24 �A) < N2 (0.36 �A) < CH4 (0.38 �A), thus resulting in higher

diffusion [64]. Although N2 gas had smaller kinetic diameter

than CH4, however, the results showed that N2 had smaller

permeability and selectivity because of CH4 and H2 higher

permeabilities, resulting in more forceful interactions of N2

with organic compounds [65]. Although this is the first

research developed to study the CH4/N2 and H2/N2 selectivity

of PES and their nanocomposite membranes, however, in

literature, there may be encountered several types of mem-

branes developed for that purpose by Yang et al. (2019), Yu

et al. (2021), Yang et al. (2020), Yuan et al. (2021), Jiang et al.

(2020), Azar et al. (2019), etc. [38,65e69], and the maximum

CH4/N2 and H2/N2 selectivity was 2.3 (CH4/N2) and 4.3 (H2/

N2). This means that PES membranes reinforced with low

concentration of CNTs have better CH4/N2 and H2/N2 selec-

tivity than the membranes listed above (twice as good).

Therefore, the PES membranes incorporating low concentra-

tion of CNTs could be used as potential candidates to separate

effectively CH4/N2 and H2/N2 for clean energy extraction

applications.

3.7.3. Gas separation membrane mechanism
As shown in the results of selectivity in the section above, the

developed CNTs/PES membranes have a high potential in

separation of flammable gases (CH4 and H2) from CH4/N2 and

H2/N2 mixture with high permeability, when compared with

other gases. This section was developed to understand better

the gas separation membrane mechanism of these gases

using the CNTs/PES membranes. The separation mechanism

was developed based on the result of pore size distribution,

and cross-section and surface morphology of PES membrane

and CNTs/PES1 membrane (optimum sample based on selec-

tivity results), as illustrated in Fig. (12A-D). As shown in SEM

images, the cross section of both membranes was composed

of porous and dense layers containing pores of different sizes

and shapes (Fig. (12A, B)). The pores of porous layer in CNTs/

PES1 sample are characterized by their large size, steady

shape and high porosity (88.4%), when compared with PES

sample (81.7%). These big pores contribute a lot to blocking of

gases with big particles size and agglomerates. On the con-

trary, the pores of dense skin layer in CNTs/PES1 sample are

characterized by their fine size. They are smoother than PES

due to surfacemodification caused by addition of CNTs. These

pores are used in the main filtration process to separate gases

based on molecule sizes of the gases. It is clear that a phase
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Fig. 10 e A-C) CO2/N2, CO2/N2, and CO2/CH4 selectivity of PES and CNTs/PES membranes at different temperatures (20e60 �C)
and pressures (1e6 bar), and D) The average selectivity values of PES and CNTs/PES membranes.
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inversion process which was used in the present research to

prepare the membranes was applied successfully to fabricate

the infinite number of membranes with uniform size and

distribution on the surface, as shown in SEM surface

morphology images Fig. (12C, D). Also, it is clear that the size of

these pores decreased significantly by adding CNTs (from 80 to

50 nm), hence helping to block bigger gas particles.

In order to explain what happened to these pores after

having mixed them with low-concentration CNTs, schematic

drawings (Fig. (12E, F)) for the cross section of these pores (in

dense layer) were made. As shown in the sketch (Fig. (12E)),

the pores of PES membrane have a round shape containing

throats (necks) in the middle that impede the movement of
Fig. 11 e A) CH4/N2 selectivity and B) H2/N2 selectivity of PES and

and pressures (1e6 bar).
gases. Also, the internal surface looks curved and rough, thus

resulting in bigger friction between the pores’ surface and

outer surfaces of transferred gases, hence decreasing the gas

permeabilities [70]. All these defects in surface morphology

can be addressed by adding a small amount of CNTs; then the

surfaces of the pores become flatter and smoother allowing

easier and faster gas transfer. It is worth mentioning that a

high concentration of CNTs can clog the pores of membranes.

In particular, CNTs have bigger length than diameter and it is

hard to control their orientation in the matrix, thus resulting

in shorter lifetime of membranes and big working costs [46].

Finally, with regard to separation mechanism of CH4/N2

and H2/N2, according to the data provided above, the
CNTs/PESmembranes at different temperatures (20e60 �C)
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Fig. 12 e Mechanism for gas separation PES and CNTs/PES membranes.
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fabricated membranes have pore sizes in the range of

50e84 nm, and this means that the separation mechanism

conforms with Knudsen Diffusion principle that uses the in-

verse square root formula of the molecular weight [71]. Ac-

cording to this separation concept, the separation is achieved

at themoment of gasewall collisions, as shown in Fig. (12E, F).

Since the surface area of wall of CNTs/PES membrane is much

larger than that of PESmembrane, the separation process was

performed faster. Also, these bigger walls can absorb some of

N2 particles and some of these particles can escape inside the

pores encountered in the porous layer. N2 particles, especially

have kinetic energy lower than H2, while CH4 can pass before

these gases, as shown in Fig. (12E, F) [68], which leads to sig-

nificant increase in H2 and CH4 permeability, when compared

with N2 and their CH4/N2 and H2/N2 selectivity, as well.
4. Conclusions

In this research, carbon nanotubes (CNTs) with very low

concentration (0.01e0.03 wt.%) were successfully embedded

into Polysulfone (PES) for fabrication of ultra-permeable

nanocomposite membranes (CNTs/PES) with high H2/N2 and

CH4/N2 selectivity, using a doctor blade process. The micro-

structure and pore size distribution showed that CNTs/PES

membranes contain a thin dense layer of fine pores (50 nm)

and porous layers made of pores with high porosity. The

chemical analysis using XRD and FTIR revealed uniform

incorporation of CNTs in the prepared matrix and decreased

crystallinity of PES leading to formation of more free spaces,

thus helping to transfer gasthrough CNTs/PES membranes.

Also, the thermal analysis showed that CNTs/PESmembranes

have thermal stability similar to that of a neat membrane.

Regarding the permeability measurements, the CNTs/PES
membranes showed the ability to operate in warm ambient

and under high pressure with excellent permeability with the

following tendency: H2 > CH4 > N2 > CO2. Also, CNTs/PES

membranes with 0.01 wt.% of CNTs proved good CO2/N2

selectivity (1.2), when compared with PES sample (0.87). In

addition, CNTs/PES membranes manifested excellent CH4/N2

and H2/N2 selectivity estimated at 1.62 and 3.95 vs 0.33 and

0.76 for the neat membranes. Based on that, the PES mem-

branes reinforced by low concentration of CNTs

(0.01e0.03 wt.%) can be classified as a promising technology

for separation of flammable gases (CH4 and H2) from CH4/N2

and H2/N2 mixture with ultra-permeability.
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