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Citation: Misevičius, A.; Andrejevas,

A.; Ostreika, A.; Blažauskas, T.;
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Abstract: In this paper, we introduce a new combinatorial optimization problem entitled the color mix
problem (CMP), which is a more general case of the grey pattern quadratic assignment problem (GP-
QAP). Also, we propose an original hybrid genetic-iterated tabu search algorithm for heuristically
solving the CMP. In addition, we present both analytical solutions and graphical visualizations
of the obtained solutions, which clearly demonstrate the excellent performance of the proposed
heuristic algorithm.

Keywords: color mix problem; combinatorial optimization; heuristic algorithms; genetic algorithms;
tabu search

1. Introduction

The color mix problem (CMP; in this work we consider three colors) can be formu-
lated as a particular case of the well-known problem—the quadratic assignment prob-
lem (QAP) [1]. The formulation is as follows. Given two integer quadratic matrices
A =

(
aij
)

n×n, B =
(
bij
)

n×n, and a set Πn of all possible permutations of the integers from
0 to n− 1, find a permutation p ∈ Πn that minimizes the following function:

z(p) =
n−1

∑
i=0

n−1

∑
j=0

aijbp(i)p(j), (1)

where aij = 1 for i = 0, . . . , m1 − 1, j = m1, m1 + 1, . . . , m− 1, i = m1, m1 + 1, . . . , m− 1,
j = 0, . . . , m1 − 1; aij = 2 for i, j = 0, . . . , m1 − 1, m1, m1 + 1, . . . , m − 1, and aij = 0
otherwise (1 ≤ m1 < m, m1 < m < n) (see Figure 1). So, the objective can be transformed to
finding the permutation elements p(0), . . . , p(m− 1) (0 ≤ p(i) ≤ n− 1, i = 0, . . . , m − 1)
such that the following simplified function is minimized:

z(p) =
m1−1

∑
i=0

(2
m1−1

∑
j=0

bp(i)p(j) +
m−1

∑
j=m1

bp(i)p(j))+
m−1

∑
i=m1

(
m1−1

∑
j=0

bp(i)p(j) + 2
m−1

∑
j=m1

bp(i)p(j)). (2)

The items in the matrix B are symmetric distances between every pair of n elements.
The distances are calculated by adopting the definition as in [2]:

bkl = brn2+s,tn2+u = ωrstu, ωrstu = max
w1,w2∈{−1,0,1}

{
1

(r− t + w1n1)
2 + (s− u + w2n2)

2

}
, (3)

where k, l = 0, . . . , n− 1, r, t = 0, . . . , n1 − 1 , s, u = 0, . . . , n2 − 1, n = n1 × n2 (in our case,
n1 = n2).
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Figure 1. Illustration of entries of matrix 𝑨 (𝑛 = 16, 𝑚 = 8, 𝑚 = 3) 

In other words, we have a grid (rectangle) of dimensions 𝑛 × 𝑛  (for simplicity, 𝑛 = 𝑛 ). More precisely, we have 𝑛 = 𝑛 × 𝑛  squares (dots, points) of identical size. For 
convenience, it may be recommended that 𝑛 be equal to 2 raised to a power 𝜆, i.e., 2  
(for example, 2 , 2 , and so on). The squares are evenly positioned in 𝑛  horizontal lines 
and 𝑛  vertical columns. There are 𝑚  squares of color 𝑐𝑜𝑙𝑜𝑟  (say, red). Also, there are 𝑚 = 𝑚 − 𝑚  squares of color 𝑐𝑜𝑙𝑜𝑟  (for example, green) and also 𝑚 = 𝑛 − 𝑚 = 𝑛 −𝑚 − 𝑚  squares of color 𝑐𝑜𝑙𝑜𝑟  (say, blue). This forms a color mix pattern, i.e., a mixture 
(composition) of three colors (red, green, blue), which can be characterised by the 
parameters , , . Then, the aim is to obtain a configuration of all the points, i.e., a 
color pattern, where the colors (color squares) are distributed in the most uniform 
possible way. In other words, we are seeking to get fine, well-balanced color 
combinations; that is, we wish to obtain the most uniform possible pattern for each color 
(see Figure 2). It should be noted that the color mix problem is a more complex case of 
the grey pattern problem (GPP) [2], where one has 𝑛 points in the rectangle and there are 𝑚 black points, while the remaining points are white. The goal is to have a grey pattern 
where the black points are scattered as regularly as possible on the rectangle. 

Figure 1. Illustration of entries of matrix A (n = 16, m = 8, m1 = 3).

In other words, we have a grid (rectangle) of dimensions n1 × n2 (for simplicity,
n1 = n2). More precisely, we have n = n1 × n2 squares (dots, points) of identical size. For
convenience, it may be recommended that n be equal to 2 raised to a power λ, i.e., 2λ (for ex-
ample, 26, 28, and so on). The squares are evenly positioned in n1 horizontal lines and n2 ver-
tical columns. There are m1 squares of color color1 (say, red). Also, there are m2 = m−m1
squares of color color2 (for example, green) and also m3 = n−m = n−m1 −m2 squares
of color color3 (say, blue). This forms a color mix pattern, i.e., a mixture (composition) of
three colors (red, green, blue), which can be characterised by the parameters m1

n , m2
n , m3

n .
Then, the aim is to obtain a configuration of all the points, i.e., a color pattern, where the
colors (color squares) are distributed in the most uniform possible way. In other words,
we are seeking to get fine, well-balanced color combinations; that is, we wish to obtain the
most uniform possible pattern for each color (see Figure 2). It should be noted that the
color mix problem is a more complex case of the grey pattern problem (GPP) [2], where one
has n points in the rectangle and there are m black points, while the remaining points are
white. The goal is to have a grey pattern where the black points are scattered as regularly
as possible on the rectangle.

The values of the elements of the analytical solution, i.e., permutation p are related
to the corresponding coordinates (r, s) of the sites (locations) on the grid through the
following formulas: r = p(i)

n2
, s = p(i) mod n2, i = 0, . . . , n− 1. Note that the first m1

elements in the permutation determine the sites on the grid where the red squares are
placed in. The next m2 elements define the positions of the green squares, and so on.
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The CMP, thus, is a theoretical optimization problem of combinatorial character. 
However, we believe that the CMP can potentially have some important areas of 
practical applications, for example, color halftoning, fine digital textures, modern 
computer graphics/multimedia, computer visual arts [3–7]. Yet another application 
example would be the selection of groups of persons out of 𝑛 available persons. In this 
case, the “distance” between persons would be, for example, a measure of the capability 
to cooperate and the ideal groups would have the least risk for conflict and the most 
potential for harmony. 

For the solution of the color mix problem, (meta)heuristic optimization algorithms 
can be applied. Although heuristics do not guarantee the optimality of the found 
solutions, they enable us to obtain sufficiently high-quality solutions within an 
affordable computation time [8]. 

There are several heuristic algorithms—which although have not been examined on 
our considered problem yet—but still are thought to be potentially applicable to the 
CMP. As an example, single solution-based local search and simulated annealing 
algorithms were examined in [9] for solving the grey pattern problem [2], which is the 
“sibling” of the CMP. Modern tabu search methodology-based algorithms were 
considered in [9,10]. Population-based-evolutionary and swarm intelligence algorithms 
constitute another class of powerful (meta)heuristic algorithms [2,9,11]. The main feature 
of this kind of algorithms is that these algorithms deal with the sets of solutions, and this 
property seems to be of crucial importance [12]. More to this, the population-based 
algorithms are easy to hybridize with the single solution-based algorithms—which is a 
natural way to further enhance the efficiency of the population-based algorithms [13,14]. 

That said, the main contribution of this article is that a new combinatorial 
optimization problem—the color mix problem—is introduced and computationally 
studied. For the solution of this problem, a hybrid genetic-hierarchical iterated tabu 
search (HITS) algorithm is proposed. The basis of the HITS algorithm is, in turn, the 
multiple reuse of the (iterated) tabu search; it also encompasses a specific greedy 
adaptive search procedure combined with a random mutation process. (In ref. [14], it is 
clearly stated that "currently there is no known polynomial-time algorithm to exactly 
solve the grey pattern problem". And we conjecture that this should be even more true 
for our considered color mix problem. So, the only rational option for obtaining high 
quality solutions in a reasonable amount of time is to employ heuristic algorithms. In 
[14], the state-of-the-art hybrid genetic-HITS algorithm was proposed for the GPP, 

Figure 2. Illustration of the (optimal) color mix pattern (n = 64, n1 = n2 = 8, m = 8, m1 = 11,
m2 = 12, m3 = 41).
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The CMP, thus, is a theoretical optimization problem of combinatorial character. How-
ever, we believe that the CMP can potentially have some important areas of practical
applications, for example, color halftoning, fine digital textures, modern computer graph-
ics/multimedia, computer visual arts [3–7]. Yet another application example would be
the selection of groups of persons out of n available persons. In this case, the “distance”
between persons would be, for example, a measure of the capability to cooperate and the
ideal groups would have the least risk for conflict and the most potential for harmony.

For the solution of the color mix problem, (meta)heuristic optimization algorithms can
be applied. Although heuristics do not guarantee the optimality of the found solutions, they
enable us to obtain sufficiently high-quality solutions within an affordable computation
time [8].

There are several heuristic algorithms—which although have not been examined on
our considered problem yet—but still are thought to be potentially applicable to the CMP.
As an example, single solution-based local search and simulated annealing algorithms
were examined in [9] for solving the grey pattern problem [2], which is the “sibling” of
the CMP. Modern tabu search methodology-based algorithms were considered in [9,10].
Population-based-evolutionary and swarm intelligence algorithms constitute another class
of powerful (meta)heuristic algorithms [2,9,11]. The main feature of this kind of algorithms
is that these algorithms deal with the sets of solutions, and this property seems to be of
crucial importance [12]. More to this, the population-based algorithms are easy to hybridize
with the single solution-based algorithms—which is a natural way to further enhance the
efficiency of the population-based algorithms [13,14].

That said, the main contribution of this article is that a new combinatorial optimization
problem—the color mix problem—is introduced and computationally studied. For the
solution of this problem, a hybrid genetic-hierarchical iterated tabu search (HITS) algorithm
is proposed. The basis of the HITS algorithm is, in turn, the multiple reuse of the (iterated)
tabu search; it also encompasses a specific greedy adaptive search procedure combined
with a random mutation process. (In ref. [14], it is clearly stated that “currently there is no
known polynomial-time algorithm to exactly solve the grey pattern problem”. And we
conjecture that this should be even more true for our considered color mix problem. So, the
only rational option for obtaining high quality solutions in a reasonable amount of time is
to employ heuristic algorithms. In [14], the state-of-the-art hybrid genetic-HITS algorithm
was proposed for the GPP, which performed extremely well. Therefore, we have naturally
chosen this sort of algorithm for the CMP. The obtained results from the computational
experiments confirm the high performance of the proposed algorithm for the CMP.)

The remainder of this paper is organized as follows: In Section 2, some preliminaries
(basic definitions) are given. The detailed description of the genetic-hierarchical iterated
tabu search algorithm and its parts is presented in Section 3. Then, in Section 4, the
results of the computational experiments are provided. The paper is completed with some
concluding comments.

2. Preliminaries

Suppose that p(v) (v = 0, . . . , n − 1) and p(w) (w = 0, . . . , n − 1, v 6= w) are
two elements in the permutation p. Then pv,w is defined in the following way:

pv,w(i) =


p(i), i 6= v, w
p(v), i = w
p(w), i = v

; i = 0, . . . , n− 1. (4)

A neighbourhood function Θ: Πn → 2Πn assigns for each p ∈ Πn a set of neighbour-
ing solutions Θ(p) ⊆ Πn. In particular, the 1-exchange neighbourhood function Θ1 is
defined as follows:

Θ1(p) =
{

p′ : p′ ∈ Πn,
(
δ1
(

p, p′
)
= 1 ∨ δ2

(
p, p′

)
= 1

)
∧ δ3

(
p, p′

)
≤ 1

}
, (5)
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where p ∈ Πn and δ1(p, p′), δ2(p, p′), δ3(p, p′) denote the corresponding distance mea-
sures between the solutions p and p′. The distances δ1, δ2, δ3 between two solutions p and
p′ can be defined according to the following formulas:

δ1
(

p, p′
)
= m1 −

∣∣{p(i) : i = 0, . . . , m1 − 1} ∩
{

p′(i) : i = 0, . . . , m1 − 1
}∣∣, (6)

δ2
(

p, p′
)
= m2 −

∣∣{p(i) : i = m1, . . . , m− 1} ∩
{

p′(i) : i = m1, . . . , m− 1
}∣∣, (7)

δ3
(

p, p′
)
= m−

∣∣{p(i) : i = 0, . . . , m− 1} ∩
{

p′(i) : i = 0, . . . , m− 1
}∣∣, (8)

where m2 = m−m1.
The solution pv,w can simply be obtained from the existing solution p by accomplishing

the pairwise interchange move φ(p, v, w): Πn × N × N → Πn , which swaps the vth and
wth elements in the given solution. Thus, pv,w = φ(p, v, w).

For the neighbouring solutions p and pv,w, the difference in the values of the objective
function is calculated in O(1) time by using the following formula:

∆z(pv,w, p) = z(pv,w)− z(p) =


2
(

c1(p(w))− c1(p(v))− 2bp(v)p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m, . . . , n− 1}

2
(

c2(p(w))− c2(p(v))− 2bp(v)p(w)

)
, v ∈ {m1, . . . , m− 1}, w ∈ {m, . . . , n− 1}

2
(

c3(p(w))− c3(p(v))− 2bp(v)p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m1, . . . , m− 1}

, (9)

where c1(x), c2(x), c3(x) are contributions of the element x (the sum of related distances):

c1(x) = 2
m1−1

∑
y=0

bx,p(y) +
m−1

∑
y=m1

bx,p(y), x = 0, . . . n− 1, (10)

c2(x) =
m1−1

∑
y=0

bx,p(y) + 2
m−1

∑
y=m1

bx,p(y), x = 0, . . . , n− 1, (11)

c3(x) =
m1−1

∑
y=0

bx,p(y) −
m−1

∑
y=m1

bx,p(y), x = 0, . . . , n− 1. (12)

Note that, after the exchange of the permutation elements p(v) and p(w), the contri-
butions must be updated according to these equations:

c1(x) =


c1(x) + 2

(
bx,p(v) − bx,p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m, . . . , n− 1}

c1(x) +
(

bx,p(v) − bx,p(w)

)
, v ∈ {m1, . . . , m− 1}, w ∈ {m, . . . , n− 1}

c1(x) +
(

bx,p(v) − bx,p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m1, . . . , m− 1}

, x = 0, . . . , n− 1, (13)

c2(x) =


c2(x) +

(
bx,p(v) − bx,p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m, . . . , n− 1}

c2(x) + 2
(

bx,p(v) − bx,p(w)

)
, v ∈ {m1, . . . , m− 1}, w ∈ {m, . . . , n− 1}

c2(x)−
(

bx,p(v) − bx,p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m1, . . . , m− 1}

, x = 0, . . . , n− 1, (14)

c3(x) =


c3(x) +

(
bx,p(v) − bx,p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m, . . . , n− 1}

c3(x)−
(

bx,p(v) − bx,p(w)

)
, v ∈ {m1, . . . , m− 1}, w ∈ {m, . . . , n− 1}

c3(x) + 2
(

bx,p(v) − bx,p(w)

)
, v ∈ {0, . . . , m1 − 1}, w ∈ {m1, . . . , m− 1}

, x = 0, . . . , n− 1. (15)

Using the above Equations (9)–(15), the computational complexity of complete evalua-
tion of the neighbourhood Θ1 is proportional to O(mn + m1m2), where m2 = m−m1.
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3. Hybrid Genetic Algorithm for the Solution of the Color Mix Problem

The principle of the used algorithm is similar to that of the hybrid genetic algo-
rithm [15] (for more complete information on the functioning of genetic algorithms, the
reader is referred to [16]), where global explorative/diversified search of the genetic op-
erators is in teamwork with the local exploitative/intensified search. The exploitative
search, in particular, is performed by the iterated hierarchical tabu search procedure
(see Section 3.4.1).

In our algorithm, the permutation elements p(0), p(1), . . . , p(n− 1) are simply
linked to the genes of individuals’ chromosomes. No encoding is required. Meanwhile,
the objective function value of the given solution, z(p), is associated with the fitness of
individuals.

The basic components of our hybrid genetic algorithm are as follows: (1) construction
of initial population; (2) parent selection for crossover procedure; (3) crossover procedure;
(4) improvement of the offspring by the HITS algorithm; (5) population replacement. The
top-level pseudocode of the genetic algorithm is provided in Algorithm 1.

Algorithm 1 Hybrid_Genetic _Algorithm

// top-level pseudocode of the hybrid genetic algorithm
// input: B, n, m, m1
// output: P
// parameters: G, PS, DT, idle_gen_limit
begin

P← Initial_Population_Construction(PS) ; i← 0 ; i′ ← 0 ;
do

p′, p′′ ← Selection(P) ;
p◦, c1, c2, c3 ← Greedy_Crossover(B, n, m, m1, p′, p′′) ;
pk, zk ← k_Level_Hierarchical_Iterated_Tabu_Search(B, n, m, m1, p◦, z(p◦), c1, c2, c3) ;
j← 0 ; include_solution← TRUE ;
do
if (
(

Distance
(

P(j), pk
)
< DT ∨ zk = z(P(j))

)
∧ zk ≥ z(P(0))) include_solution← FALSE

endif;
j← j + 1

while (j 6= PS);
if (include_solution)

if (z(P(0)) > zk) P(0)← pk ;
elseif (z(P(PS− 1)) > zk)
P(Upper_Index(P ))← pk

endif;
i′ ← i ;

elseif (i− i′ > idle_gen_limit ∧ i < G− idle_gen_limit)
P← Population_Restart(PS) ; i′ ← i

endif;
i← i + 1

while (i 6= G)
end.

Notes. 1. G, PS denote the total number of generations and the population size, respec-
tively. 2. The distance (Distance) is calculated using the Equations (6) and (7). 3. DT denotes
the distance threshold between solutions. 4. idle_gen_limit denotes the limit of idle generations
(we used idle_gen_limit = max{3, 0.05G}). 5. The mutation process is embedded into the k-
level hierarchical iterated tabu search algorithm. 6. The population restart (Population_Restart)
is performed by applying the “clone” of the initial population construction procedure.

3.1. Construction of Initial Population

There are two stages of the construction of initial population. In the first one, the pre-
initial (primordial) population is generated and improved; in the second one, the truncation
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(culling) of the obtained population is performed. Firstly, PS′ = PS× C1 members of the
pre-initial population P are randomly generated, where PS denotes the population size,
and C1 (C1 ≥ 1) is the predefined parameter to control the size of the pre-initial population.

Every generated solution is subject to improvement by the HITS algorithm. There
is a special condition. If the improved solution (p) is better than the best-found solution,
then the improved solution substitutes the best-found solution. Otherwise, it is checked if
the minimum distance (min

p∈P
{δ1(p, p) + δ2(p, p)}) between the solution p and the present

population solutions is greater than the predetermined distance threshold, DT. If this is the
case, then the new solution enters the population. Otherwise, the new solution is ignored
and a random solution is included instead. The distance threshold is related to the value of
m through the following equation: DT = max{2, εm}, where ε is the distance threshold
coefficient (0 < ε ≤ 1). In the second stage, (C1 − 1)PS worst members of the primordial
population are deleted and just PS members survive for the future generations.

3.2. Parent Selection

In our algorithm, the parents are selected using a random selection rule.

3.3. Crossover Procedure

One of the main purposes of crossover is to diversify the search process by recombining
the genetic information present in the parental chromosomes. In our hybrid genetic
algorithm, the crossover operator takes place at each generation of GA, that is, the crossover
probability is equal to exactly 1. Note that the straightforward application of the standard
bit-string-based crossovers to the color mix problem may not be necessary effective, because
the factual chromosomal locations of genes are irrelevant in the CMP. Still, it is rational to
preserve the common genes of parents in the recombination process. Meanwhile, the other
genes are formed by adopting the heuristic greedy-based approach by choosing the genes
from the parents. More precisely, the genes are chosen from either the first or the second
parent such that the currently selected gene contributes least to the value of the objective
function. The pseudocode of the greedy crossover procedure is given in Algorithm 2. More
details on this procedure can be found in [13].

It can be seen that the computational time complexity of the greedy crossover operator
is proportional to O

(
mn + (m1)

2 + (m2)
2
)

.

Algorithm 2 Greedy_Crossover

// pseudocode of the greedy crossover procedure
// input: B, n, m, m1, p′, p′′

// output: p◦, c1, c2, c3
begin

p◦ ← {p′(i)|i = 0, . . . , m1 − 1} ∩ {p′′(i)|i = 0, . . . , m1 − 1} ; common_elements← |p◦| ;
i← 0 ;
do

j← 0 ; sum← 0 ; while (j 6= common_elements) sum← sum + bi,p(j) ; j← j + 1 endwhile;
c1(i)← 2× sum ; c2(i)← sum ; c3(i)← sum ; i← i + 1

while (i 6= n);
while (common_elements 6= m1)

#_o f _points← m1 ;
p′, common_elements, c1, c2, c3 ←

Greedy_Offspring_Creation(B, n, m, m1, p′, c1, common_elements, #_o f _points);
p′′, common_elements, c1, c2, c3 ←

Greedy_Offspring_Creation(B, n, m, m1, p′′, c1, common_elements, #_o f _points)
endwhile;
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p◦ ← p◦ ∪ ({p′(i)|i = m1, . . . , m− 1} ∩ {p′′(i)|i = m1, . . . , m− 1}) ; common_elements← |p◦| ;
i← 0 ;
do

j← m1 ; sum← 0 ; while (j 6= common_elements) sum← sum + bi,p(j) ; j← j + 1 endwhile;
c1(i)← c1(i) + sum ; c2(i)← c2(i) + 2× sum ; c3(i)← c3(i)− sum ; i← i + 1

while (i 6= n);
while (common_elements 6= m)

#_o f _points← m ;
p′, common_elements, c1, c2, c3 ←

Greedy_Offspring_Creation(B, n, m, m1, p′, c2, common_elements, #_o f _points);
p′′, common_elements, c1, c2, c3 ←

Greedy_Offspring_Creation(B, n, m, m1, p′′, c2, common_elements, #_o f _points)
endwhile;
p◦ ← Filling_Remaining_Elements(p◦, p′, p′′)

end.

Notes. 1. The pseudocode of the offspring creation procedure (Greedy_Offspring
_Creation) is presented in Algorithm 3. 2. The (unoccupied) positions p(m), p(m + 1), . . . ,
p(n− 1) are filled in with the remaining unselected elements using the procedure
Fill_Remaining_Elements.

Algorithm 3 Greedy_Offspring _Creation

// pseudocode of the greedy offspring creation sub-procedure
// input: B, n, m, m1, p, this_c, common_elements, #_o f _points, c1, c2, c3
// output: p, common_elements, c1, c2, c3
begin

if (common_elements 6= #_o f _points)
minimum_contribution← ∞ ; j← 0 ;
do

if (element p(j) is not yet selected)
if (this_c(p(j)) < minimum_contribution) minimum_contribution← this_c(p(j)) ; k← j

endif;
j← j + 1

while (j 6= #_o f _points);
if (minimum_contribution 6= ∞)

if (#_o f _points = m1)
i← 0 ;
do

c1(i)← c1(i) + 2× bi,p(k) ; c2(i)← c2(i) + bi,p(k) ; c3(i)← c3(i) + bi,p(k) ; i← i + 1
while (i 6= n);

elseif (#_o f _points = m)
i← 0 ;
do

c1(i)← c1(i) + bi,p(k) ; c2(i)← c2(i) + 2× bi,p(k) ; c3(i)← c3(i)− bi,p(k) ; i← i + 1
while (i 6= n);

endif;
p(common_elements)← p(k) ; common_elements← common_elements + 1

endif
endif

end.

3.4. Offspring Improvement
3.4.1. Hierarchical Iterated Tabu Search Algorithm

Every produced offspring is subject to improvement by the hierarchical iterated tabu
search procedure which can also be seen as a multi-level tabu search [17] procedure, where
the basic idea is the cyclic (multiple) reuse of the tabu search algorithm. The k-level
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hierarchical iterated tabu search algorithm is consisting of three main ingredients: (1) call
of the k− 1-level hierarchical iterated tabu search procedure; (2) selection (acceptance) of
the solution for perturbation, i.e., mutation; (3) perturbation of the selected solution.

The perturbed solution serves as an input for the autonomous (self-contained) TS
procedure. The TS algorithm gives back an optimized solution, and so on. The solution
acceptance rule is very simple: we always accept the recently found improved solution.

The overall iterative process is continued until a given total number of iterations have
been accomplished (see Algorithm 4). The time complexity of HITS is proportional to
O(mn + m1m2), although the proportionality coefficient may be quite large.

We recall that we have used the 2-level hierarchical tabu search algorithm (k = 2).

Algorithm 4 k_Level_Hierarchical_Iterated_Tabu _Search

// pseudocode of the k-level hierarchical iterated tabu search algorithm
// input: B, n, m, m1, p, z, c1, c2, c3
// output: p<k>, z<k>

// parameters: Q<k>

begin
p<k> ← p ; z<k> ← z; c<k>

1 ← c1 ; c<k>
2 ← c2 ; c<k>

3 ← c3 ; q<k> ← 0 ;
do

p<k−1>, z<k−1>, c<k−1>
1 , c<k−1>

2 , c<k−1>
3 ← k −

1_Level_Hierarchical_Iterated_Tabu_Search
(

B, n, m, m1, p<k>, z<k>, c<k>
1 , c<k>

2 , c<k>
3

)
;

if (z<k> > z<k−1>) p<k> ← p<k−1> ; z<k> ← z<k−1>; c<k>
1 ← c<k−1>

1 ; c<k>
2 ← c<k−1>

2 ;
c<k>

3 ← c<k−1>
3 endif;

q<k> ← q<k> + 1 ;
if (q<k> 6= Q<k>) // perturbation of the solution p<k>

p<k> ←Mutation_Procedure
(

p<k>
)

;

p<k>, c<k>
1 , c<k>

2 , c<k>
3 ← Greedy_Adaptive_Search_Procedure

(
B, n, m, m1, p<k>, c<k>

1 , c<k>
2 , c<k>

3

)
endif

while (q<k> 6= Q<k>)
end.

Note. The (zero-level) 0-level HITS procedure is correspondent to the iterated tabu
search (ITS) procedure (see Algorithm 5).

Algorithm 5 Iterated_Tabu _Search

// pseudocode of the iterated tabu search algorithm
// input: B, n, m, m1, p, z, c1, c2, c3
// output: p<0>, z<0>, c<0>

1 , c<0>
2 , c<0>

3
// parameters: Q<0>

begin
p<0> ← p ; z<0> ← z; c<0>

1 ← c1 ; c<0>
2 ← c2 ; c<0>

3 ← c3 ; q<0> ← 0 ;
do

p•, z•, c•1 , c•2 , c•3 ← Tabu_Search
(

B, n, m, m1, p<0>, z<0>, c<0>
1 , c<0>

2 , c<0>
3

)
;

if (z<0> > z•) p<0> ← p• ; z<0> ← z•; c<0>
1 ← c•1 ; c<0>

2 ← c•2 ; c<0>
3 ← c•3 endif;

q<0> ← q<0> + 1 ;
if (q<0> 6= Q<0>) // perturbation of the solution p<0>

p<0> ←Mutation_Procedure
(

p<0>) ;
p<0>, c<0>

1 , c<0>
2 , c<0>

3 ← Greedy_Adaptive_Search_Procedure
(

B, n, m, m1, p<0>, c<0>
1 , c<0>

2 , c<0>
3

)
endif

while (q<0> 6= Q<0>)
end.



Appl. Sci. 2021, 11, 7263 9 of 20

3.4.2. Tabu Search Algorithm

The 0-level HITS algorithm (the ITS algorithm) uses a self-contained (“kernel”) tabu
search (TS) procedure (a more detailed discussion of the principles of TS algorithms can be
found in [18]).

It is this procedure that is wholly responsible for the improvement of a given solution.
At the same time, this procedure is in the role of the intensification of the search process,
while the perturbation process rather serves as the search diversification mechanism. Briefly
speaking, the TS procedure analyses the neighbourhood of the incumbent solution and
accepts the non-tabu (non-prohibited) move that most improves the objective function.
In order to avoid cycling search trajectories, the return to recently visited solutions is
forbidden for some time period. The tabu list (list of prohibitions), T, is operationalized as
a matrix of size n× n. In this case, the entry tij memorizes the sum of the current iteration
number and the tabu tenure, h. The value of h depends on the problem size, n (we have
chosen h = 0.5n).

It should be noted that the tabu status is disregarded at accident moments with a
very small probability α (α < 0.1). This strategy enables to increase the number of non-
prohibited solutions and not to confine the search directions too much. The tabu status
is also ignored if an aspiration criterion is satisfied, i.e., the currently attained solution
appears better than the best obtained solution.

Moreover, our TS algorithm utilizes an additional memory known as a secondary
memory, SM. The goal of this memory is to archive high-quality solutions, which although
are evaluated as quite good, but are not elected. Thus, if the best solution stays unchanged
for more than idle_iter_limit = γτ iterations, then the tabu list is wiped out and the
search is reset to the one of the “second” solutions in SM (here, τ denotes the number of
iterations of the TS algorithm, and γ is a futile (idle) iterations limit factor in such a way
that 1 ≤ γτ ≤ τ).

The overall TS process is finished as soon as the maximum number of TS iterations, τ,
have been executed. The pseudo-code of the tabu search algorithm is shown in Algorithm 6.
After finishing the tabu search procedure, the obtained solution is subjected to perturbation,
which is described in the next section.

Algorithm 6 Tabu_Search

// pseudocode of the tabu search algorithm
// input: B, n, m, m1, p, z, c1, c2, c3
// output: p•, z•, c•1 , c•2 , c•3
// parameters: τ, h, α, β, idle_iter_limit
begin

clear tabu list TabuList; clear hash table HashTable;
p• ← p ; z• ← z ; c•1 ← c1 ; c•2 ← c2 ; c•3 ← c3 ; q← 0 ; q′ ← 0 ; SM_Size← 0 ;
do

∆′min ← ∞ ; ∆′′min ← ∞ ;
∆′min,∆′′min,v′,v′′,w′,w′′, f lag′, f lag′′ ← Neighbourhood_Search(0, m1, m, n, q, p, z, z•, c1, ”1”) ;
∆′min,∆′′min,v′,v′′,w′,w′′, f lag′, f lag′′ ← Neighbourhood_Search(m1, m, m, n, q, p, z, z•, c2, ”2”) ;
∆′min,∆′′min,v′,v′′,w′,w′′, f lag′, f lag′′ ← Neighbourhood_Search(0, m1, m1, m, q, p, z, z•, c3, ”3”) ;
if (∆′′min 6= ∞) SM(SM_Size)← p, z + ∆′′min, c1, c2, c3, v′′, w′′, f lag′′ ; SM_Size← SM_Size + 1

endif;
if (∆′min 6= ∞)

p← φ(p, v′, w′) ; recalculate c1, c2, c3 depending on v′, w′, f lag′;
TabuList(p(v′), p(w′))← q + h ; TabuList(p(w′), p(v′))← q + h ;
z← z + ∆′min ; HashTable(z)← FALSE ;
if (z• > z) p• ← p ; z• ← z ; c•1 ← c1 ; c•2 ← c2 ; c•3 ← c3 ; q′ ← q endif

endif;
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if (q− q′ > idle_iter_limit ∧ q < τ − idle_iter_limit)
clear tabu list TabuList;
p, z, c1, c2, c3, v′′, w′′, f lag′′ ← SM(Random(β× SM_Size, SM_Size)) ;
p← φ(p, v′′, w′′) ; recalculate c1, c2, c3 depending on v′′, w′′, f lag′′;
TabuList(p(v′′), p(w′′))← q + h ; TabuList(p(w′′), p(v′′))← q + h ;
HashTable(z)← FALSE ;
q′ ← q

endif;
q← q + 1
while (q 6= τ)

end.

Notes. 1. τ denotes the total number of iterations. 2. h denotes the tabu tenure
(prohibition period). 3. idle_iter_limit denotes the limit of idle search iterations (we used
idle_iter_limit = max{3, 0.2τ}). 4. SM denotes the secondary memory for archiving “sec-
ond” solutions, i.e., solutions that are left second after the evaluation of the neighbourhood
Θ1; SM_Size denotes the size of the secondary memory. 5. α denotes a randomization
coefficient (we used α = 0.02), and β is a random access parameter (we used = 0.8).
6. The pseudocode of the neighbourhood search procedure (Neighbourhood_Search) is
presented in Algorithm 7. 7. The function Random(x1, x2) returns a random number in
the interval [x1, x2) .

Algorithm 7 Neighbourhood_Search

// pseudocode of the neighbourhood search sub-procedure
// input: neighbourhood_index1, neighbourhood_index2
// neighbourhood_index3, neighbourhood_index4
// TabuList, HashTable, q, p, z, z•, c, f lag ( f lag = “1”|”2”|”3”)
// output: ∆′min, ∆′′min, v′, v′′, w′, w′′, f lag′, f lag′′

// parameters: α

begin
f lag′ ← ”empty” ; i← neighbourhood_index1 ;

do
j← neighbourhood_index3 ;
do

∆← 2×
(

c(p(j))− c(p(i)) + 2× bp(i),p(j)

)
;

if (
(
∆ < ∆′min ∧ HashTable(z+∆) ∧ (TabuList(p(i), p(j))< q ∨ Random( )< α)

)
∨ z+∆ < z•)

if (∆ < ∆′min)
∆′′min ← ∆′min ; v′′ ← v′ ; w′′ ← w′ ; f lag′′ ← f lag′ ; ∆′min ← ∆ ; v′ ← i ; w′ ← j ; f lag′ ← f lag ;

elseif (∆ < ∆′′min)
∆′′min ← ∆ ; v′′ ← i ; w′′ ← j ; f lag′′ ← f lag

endif
endif
j← j + 1

while (j 6= neighbourhood_index4)
i← i + 1

while (i 6= neighbourhood_index2)
end.

Note. The function Random( ) returns a random number in the interval [0, 1) .

3.4.3. Perturbation Process

The perturbation procedure contains only two steps: (1) mutation (random shuffling)
and (2) re-construction (recreation) of mutated solution.

Let p∼ be the candidate solution to the mutation process. Then, after shuffling the
elements p∼(0), . . . , p∼(m1 − 1), p∼(m1), . . . , p∼(m− 1), the elements p∼(m1 − r1), . . . ,
p∼(m1 − 1), p∼(m− r2), . . . , p∼(m− 1) are abandoned (no action is required). In our
algorithm, r1 = max{1, ξm1}, r2 = max{1, ξm2}. The parameter ξ (0 < ξ ≤ 1) is
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called a mutation rate coefficient. The pseudocode of the mutation procedure is given in
Algorithm 8.

Algorithm 8 Mutation_Procedure

// pseudocode of the mutation procedure
// input: m, m1, p
// output: p∼

begin
p∼ ← p;
i← 0 ; while (i 6= m1 − 1) p∼ ← φ(p∼, i, Random(i, m1)) ; i← i + 1 endwhile;
i← m1 ; while (i 6= m− 1) p∼ ← φ(p∼, i, Random(i, m)) ; i← i + 1 endwhile

end.

The re-construction is performed by a so-called greedy adaptive search procedure
(GASP) (see Algorithm 9). It is deterministic and also adaptive since it respects the selected
solution elements. At every step of the first phase of procedure, step (step = 0, . . . , r1 − 1),
an element (jmin ∈ {p(m1 − r1 + step), . . . , p(m1 − 1)} ∪ {p(m− r2), . . . , p(n− 1)}) is
picked up, one at a time, so that the sum ∑

m1−r1+step−1
i=0 c1(p(i)) + c1(jmin) is minimized

(see Algorithm 10). After adding the element, the contributions are recomputed accordingly.
The second phase is executed in a similar fashion (see Algorithm 10). All the calculations
take approximately O(ξmn) time. This results in a quite fast execution of GASP when the
value of ξ is not large.

Algorithm 9 Greedy_Adaptive_Search _Procedure

// pseudocode of the greedy adaptive search procedure
// input: B, n, m, m1, p, c1, c2, c3
// output: p, c1, c2, c3
// parameters: ξ

begin
i← 0 ; r1 = max{1, ξm1}; r2 = max{1, ξm2};
do

j← m1 − l1 ; sum1 ← 0 ; while (j 6= m1) sum1 ← sum1 + bi,p(j) ; j← j + 1 endwhile;
j← m− l2 ; sum2 ← 0 ; while (j 6= m) sum2 ← sum2 + bi,p(j) ; j← j + 1 endwhile;
c1(i)← c1(i)− 2× sum1 − sum2 ; c2(i)← c2(i)− sum1 − 2× sum2 ;

c3(i)← c3(i)− sum1 + sum2 ;
i← i + 1

while (i 6= n);
z← 0 ; i← 0 ; while (i 6= m1 − r1) z← z + c1(p(i)) ; i← i + 1 endwhile;
i← m1 ; while (i 6= m− r2) z← z + c2(p(i)) ; i← i + 1 endwhile;
i← m1 − r1 ;
while (i 6= m1)

p, z, c1, c2, c3 ← Greedy_Solution_Construction(B, n, m, m1, i, c1) ; i← i + 1
endwhile;
i← m− r2 ;
while (i 6= m)

p, z, c1, c2, c3 ← Greedy_Solution_Construction(B, n, m, m1, i, c2) ; i← i + 1
endwhile;
p← Filling_Remaining_Elements(p)

end.
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Algorithm 10 Greedy_Solution _Construction

// pseudocode of the greedy solution construction sub-procedure
// input: B, n, m, m1, i, this_c, c1, c2, c3
// output: p, z, c1, c2, c3
begin

minimum_contribution← ∞ ; j← 0 ;
do

if (element j is not yet selected)
if (this_c(j) < minimum_contribution) minimum_contribution← this_c(j) ; jmin ← j endif;

j← j + 1
while (j 6= n);
p(i)← jmin ;

if (this_c = c1)
j← 0 ;
do

c1(j)← c1(j) + 2× bi,jmin ; c2(j)← c2(j) + bi,jmin ; c3(j)← c3(j) + bi,jmin ; j← j + 1
while (j 6= n);

elseif (this_c = c2)
j← 0 ;
do

c1(j)← c1(j) + bi,jmin ; c2(j)← c2(j) + 2× bi,jmin ; c3(j)← c3(j)− bi,jmin ; j← j + 1
while (j 6= n)

endif;
z← z + minimum_contribution

end.

3.5. Population Replacement

For the replacement of a population, we apply a modified replacement rule to respect
not only the quality of the solutions, but also the distances (differences) between solutions.
In particular, we have implemented an enhanced version of the “µ + 1” update rule. The
idea is to preserve the minimum distance (DT) between population members. So, if
the newly created offspring violates the minimum distance criterion, then it is simply
omitted. The exception is the situation where the produced offspring is better than the best
population individual. Note that the offspring is included into the population only if it is
better than the worst population individual.

4. Computational Experiments

The hybrid genetic algorithm is coded by using C# programming language. For
converting the analytical solutions to graphical images, however, Java programming
language is used. The computational experiments have been conducted using an×86 series
personal computer equipped with an Intel (Intel Corp., Santa Clara, CA, USA) 2 GHz
4 cores processor, 8 GB RAM and the 64-bit MS Windows operating system.

We experimented with the distance matrix B of size 64 (n = 64), which is available
at the public electronic library of the benchmark data instances of the QAP—QAPLIB
(http://www.seas.upenn.edu/qaplib (accessed on 30 June 2021), also see [19]). The grid
size is 8× 8 (n1 = n2 = 8). The value of the parameter m varies between 2 and n− 1, while
the parameter m1 varies between 1 and m− 1 (in fact, m

2 is enough since solutions with
m
2 + 1, m

2 + 2, . . . can be obtained by symmetry from solutions with m
2 − 1, m

2 − 2, . . . ).
We recall that m2 = m−m1, m3 = n−m, where m1, m2, m3 denote the numbers of dots
(squares) of first, second and third color, respectively.

As main algorithm performance criteria, we adopt the success rate (SR) of the al-
gorithm and the average deviation (AD) of the objective function. The success rate is
calculated by the following formula: SR = Nbkv

R × 100[%], where Nbkv is the total number
of the best-known solutions (BKSs) over R = 10 independent runs of the algorithm. The
average deviation is derived from this formula: AD = z−BKV

BKV × 100[%], where z is the

http://www.seas.upenn.edu/qaplib
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average objective function value over R runs of the algorithm and BKV denotes the best-
known value of the objective function.

At every run, the algorithm is applied to the given particular values of n, m and m1.
Each time, the genetic algorithm starts from a new, distinct random initial population.
The current run of the algorithm is terminated if the total number of generations, G, has
been reached.

The particular values of the control parameters of the genetic algorithm are shown in
Table 1.

Table 1. Values of the control parameters of the hybrid genetic algorithm used in the experiments.

Parameter Value Remarks

Population size, PS 20
Number of generations, G 50

Distance threshold, DT max {2, b0.1mc} 0 < DT ≤ m
Idle generations limit, idle_gen_limit max {3, b0.05Gc} 0 < idle_gen_limit ≤ G

Number of iterations of hierarchical iterated tabu search, Qhier 100 Qhier = Q(0) ×Q(1) ×Q(2) †

Number of iterations of tabu search, τ 30
Idle iterations limit, idle_iter_limit max {3, b0.2τc} 0 < idle_iter_limit ≤ τ

Tabu tenure, h b0.5nc h > 0
Randomization coefficient for tabu search, α 0.02 0 ≤ α < 1

Mutation rate factor, ξ 0.25 0 < ξ ≤ 1
Number of runs of the algorithm, R 10

† Q(0) = 10, Q(1) = 5, Q(2) = 2.

The results of the conducted experiments are presented in Table 2. All these results
were achieved without fine-tuning of the parameters—only using the prescribed, default
values of the control parameters of the genetic algorithm.

Table 2. Results of the computational experiments (part I).

n m m1 BKV BFV AD
[%]

SR
[%]

t
[sec] n m m1 BKV BFV AD

[%]
SR
[%]

t
[sec]

64 2 1 6250 6250 0.000 100 0.773 64 16 8 4,020,000 4,020,000 0.000 100 4.016
64 3 1 37,500 37,500 0.000 100 1.434 64 17 1 6,544,448 6,544,448 0.000 100 3.678
64 4 1 93,750 93,750 0.000 100 1.524 64 17 2 6,180,016 6,180,016 0.000 100 3.845
64 4 2 75,000 750,00 0.000 100 1.431 64 17 3 5,837,720 5,837,720 0.000 100 3.617
64 5 1 225,000 225,000 0.000 100 1.908 64 17 4 5,498,552 5,498,552 0.000 100 3.925
64 5 2 207,384 207,384 0.000 100 1.900 64 17 5 5,288,324 5,288,324 0.000 100 3.886
64 6 1 423,248 423,248 0.000 100 2.014 64 17 6 5,120,416 5,120,416 0.000 100 3.782
64 6 2 337,500 337,500 0.000 100 1.862 64 17 7 4,994,172 4,994,172 0.000 100 3.788
64 6 3 341,022 341,022 0.000 100 2.101 64 17 8 4,926,672 4,926,672 0.000 100 3.949
64 7 1 662,500 662,500 0.000 100 2.180 64 18 1 7,743,646 7,743,646 0.000 100 3.797
64 7 2 559,448 559,448 0.000 100 2.166 64 18 2 7,161,396 7,161,396 0.000 100 4.036
64 7 3 487,500 487,500 0.000 100 2.217 64 18 3 6,812,246 6,812,246 0.000 100 3.884
64 8 1 918,750 918,750 0.000 100 2.327 64 18 4 6,452,128 6,452,128 0.000 100 3.992
64 8 2 800,000 800,000 0.000 100 2.326 64 18 5 6,217,116 6,217,116 0.000 100 4.062
64 8 3 718,750 718,750 0.000 100 2.410 64 18 6 5,991,716 5,991,716 0.000 100 3.777
64 8 4 650,000 650,000 0.000 100 2.484 64 18 7 5,854,952 5,854,952 0.000 100 4.039
64 9 1 1,290,000 1,290,000 0.000 100 2.888 64 18 8 5,768,624 5,768,624 0.000 100 3.867
64 9 2 1,154,188 1,154,188 0.000 100 3.344 64 18 9 5,761,814 5,761,814 0.000 100 4.099
64 9 3 1,057,730 1,057,730 0.000 100 3.801 64 19 1 8,958,414 8,958,414 0.000 100 3.654
64 9 4 976,980 976,980 0.000 100 3.676 64 19 2 8,394,606 8,394,606 0.000 100 4.358
64 10 1 1,748,280 1,748,280 0.000 100 3.104 64 19 3 7,815,844 7,815,844 0.000 100 4.482
64 10 2 1,542,500 1,542,500 0.000 100 3.241 64 19 4 7,481,512 7,481,512 0.000 100 4.727
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Table 2. Cont.

n m m1 BKV BFV AD
[%]

SR
[%]

t
[sec] n m m1 BKV BFV AD

[%]
SR
[%]

t
[sec]

64 10 3 1,416,954 1,416,954 0.000 100 3.234 64 19 5 7,198,882 7,198,882 0.000 100 4.057
64 10 4 1,304,924 1,304,924 0.000 100 3.011 64 19 6 6,961,460 6,961,460 0.000 100 3.868
64 10 5 1,297,932 1,297,932 0.000 100 3.693 64 19 7 6,767,378 6,767,378 0.000 100 4.052
64 11 1 2,225,738 2,225,738 0.000 100 3.782 64 19 8 6,629,500 6,629,500 0.000 100 4.235
64 11 2 2,023,044 2,023,044 0.000 100 3.759 64 19 9 6,578,410 6,578,410 0.000 100 4.808
64 11 3 1,832,500 1,832,500 0.000 100 3.400 64 20 1 10,226,448 10,226,448 0.000 100 4.246
64 11 4 1,708,508 1,708,508 0.000 100 3.465 64 20 2 9,639,732 9,639,732 0.000 100 4.222
64 11 5 1,666,674 1,666,674 0.000 100 3.452 64 20 3 9,055,990 9,055,990 0.000 100 4.664
64 12 1 2,772,894 2,772,894 0.000 100 3.382 64 20 4 8,482,792 8,482,792 0.000 100 5.065
64 12 2 2,530,300 2,530,300 0.000 100 3.440 64 20 5 8,242,654 8,242,654 0.000 100 4.332
64 12 3 2,332,450 2,332,450 0.000 100 3.627 64 20 6 7,947,380 7,947,380 0.000 100 4.206
64 12 4 2,135,000 2,135,000 0.000 100 3.541 64 20 7 7,733,348 7,733,348 0.000 100 4.096
64 12 5 2,094,542 2,094,542 0.000 100 3.160 64 20 8 7,541,536 7,541,536 0.000 100 4.441
64 12 6 2,058,808 2,058,808 0.000 100 3.282 64 20 9 7,452,098 7,452,098 0.000 100 4.763
64 13 1 3,391,510 3,391,510 0.000 100 3.191 64 20 10 7,419,404 7,419,404 0.000 100 4.697
64 13 2 3,117,606 3,117,606 0.000 100 3.213 64 21 1 11,537,304 11,537,304 0.000 100 4.605
64 13 3 2,883,878 2,883,878 0.000 100 3.350 64 21 2 10,944,262 10,944,262 0.000 100 4.390
64 13 4 2,682,128 2,682,128 0.000 100 3.367 64 21 3 10,359,224 10,359,224 0.000 100 4.364
64 13 5 2,575,000 2,575,000 0.000 100 3.354 64 21 4 9,791,688 9,791,688 0.000 100 5.261
64 13 6 2,535,680 2,535,680 0.000 100 3.292 64 21 5 9,287,240 9,287,240 0.000 100 5.036
64 14 1 4,073,442 4,073,442 0.000 100 3.354 64 21 6 9,030,702 9,030,702 0.000 100 5.125
64 14 2 3,767,164 3,767,164 0.000 100 3.334 64 21 7 8,795,182 8,795,182 0.000 100 5.358
64 14 3 3,504,318 3,504,318 0.000 100 3.387 64 21 8 8,571,828 8,571,828 0.000 100 5.686
64 14 4 3,248,604 3,248,604 0.000 100 3.364 64 21 9 8,442,646 8,442,646 0.000 100 5.311
64 14 5 3,131,906 3,131,906 0.000 100 3.471 64 21 10 8,349,142 8,349,142 0.000 100 5.732
64 14 6 3,027,500 3,027,500 0.000 100 3.493 64 22 1 12,922,754 12,922,754 0.000 100 5.163
64 14 7 3,020,756 3,020,756 0.000 100 3.650 64 22 2 12,252,800 12,252,800 0.000 100 5.106
64 15 1 4,803,016 4,803,016 0.000 100 3.453 64 22 3 11,671,958 11,671,958 0.000 100 5.248
64 15 2 4,467,502 4,467,502 0.000 100 3.363 64 22 4 11,113,084 11,113,084 0.000 100 4.511
64 15 3 4,167,234 4,167,234 0.000 100 3.623 64 22 5 10,602,386 10,602,386 0.000 100 5.285
64 15 4 3,909,108 3,909,108 0.000 100 3.658 64 22 6 10,104,188 10,104,188 0.000 100 5.329
64 15 5 3,746,844 3,746,844 0.000 100 3.689 64 22 7 9,872,662 9,872,662 0.000 100 5.306
64 15 6 3,609,580 3,609,580 0.000 100 3.621 64 22 8 9,618,052 9,618,052 0.000 100 5.380
64 15 7 3,517,500 3,517,500 0.000 100 3.679 64 22 9 9,483,714 9,483,714 0.000 100 5.865
64 16 1 5,568,750 5,568,750 0.000 100 3.711 64 22 10 9,344,104 9,344,104 0.000 100 6.292
64 16 2 5,210,000 5,210,000 0.000 100 3.786 64 22 11 9,342,556 9,342,556 0.000 100 5.886
64 16 3 4,888,750 4,888,750 0.000 100 4.207 64 23 1 14,411,076 144,110,76 0.000 100 5.790
64 16 4 4,580,000 4,580,000 0.000 100 4.013 64 23 2 13,718,236 13,718,236 0.000 100 5.500
64 16 5 4,408,750 4,408,750 0.000 100 4.390 64 23 3 13,051,236 13,051,236 0.000 100 5.568
64 16 6 4,250,000 4,250,000 0.000 100 4.241 64 23 4 12,471,980 12,471,980 0.000 100 6.146
64 16 7 4,128,750 4,128,750 0.000 100 3.981 64 23 5 11,942,532 11,942,532 0.000 100 5.976

In Table 2, we provide the following information: n—the total number of dots (squares),
m, m1, BKV—best known value of the objective function, BFV—best found objective
function value, AD—average deviation of the objective function, SR—success rate, t—the
average time (CPU time) per one run of the algorithm. Only the part of the results are
shown for the sake of brevity. More results of the computational experiments (including the
graphical images) will be available at https://www.personalas.ktu.lt/~alfmise/, accessed
on 30 June 2021. Also, electronic copies of the additional results can be freely requested by
contacting the authors.

The results in Table 2 demonstrate the astonishingly excellent performance (and
reliability) of the proposed genetic algorithm from both the quality of solutions and the
computational budget point of view. 100-percentage success rate was achieved in all
126 examined cases (scenarios). The cumulative average CPU time per run is equal to
approximately 3.904 s.

https://www.personalas.ktu.lt/~alfmise/


Appl. Sci. 2021, 11, 7263 15 of 20

The lasting, steady stability of the results and the almost linear character of the run
time of the algorithm can be observed (see Table 2 and Figure 3).
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Figure 3. Illustration of run time behaviour of the hybrid genetic algorithm for different values of m.

In order to reveal the importance and usefulness of the hierarchical iterated tabu
search used within the hybrid genetic algorithm, we carried out some additional experi-
ments using the pure genetic algorithm without the HITS procedure (under equal other
conditions). The obtained results are shown in Table 3. The results clearly demonstrate
that: (i) the performance of the hybrid genetic algorithm heavily depends on the HITS
procedure used; (ii) the dominance of hybrid GA over pure GA is strongly pronounced
both in terms of the average deviation of the objective function and the success rate of the
algorithm—thus our designed HITS procedure is very well suited for implementation in
the hybrid genetic algorithm.

Table 3. Results of the computational experiments (part II).

n m m1 BKV BFV AD
[%]

SR
[%]

t
[sec] n m m1 BKV BFV AD

[%]
SR
[%]

t
[sec]

64 2 1 6250 6250 2.800 90.000 0.001 64 16 8 4,020,000 4,486,464 14.254 0.000 0.001
64 3 1 37,500 37,500 11.063 10.000 0.000 64 17 1 6,544,448 6,992,588 8.553 0.000 0.001
64 4 1 93,750 93,750 14.326 10.000 0.000 64 17 2 6,180,016 6,584,496 7.851 0.000 0.001
64 4 2 75,000 80,528 29.246 0.000 0.000 64 17 3 5,837,720 6,220,054 8.219 0.000 0.001
64 5 1 225,000 237,240 12.263 0.000 0.000 64 17 4 5,498,552 5,857,500 8.062 0.000 0.001
64 5 2 207,384 210,254 6.547 0.000 0.000 64 17 5 5,288,324 5,608,208 8.586 0.000 0.001
64 6 1 423,248 441,200 6.896 0.000 0.000 64 17 6 5,120,416 5,403,878 7.521 0.000 0.001
64 6 2 337,500 364,444 12.436 0.000 0.000 64 17 7 4,994,172 5,308,534 7.945 0.000 0.001
64 6 3 341,022 350,208 5.958 0.000 0.000 64 17 8 4,926,672 5,144,976 7.986 0.000 0.001
64 7 1 662,500 675,148 4.839 0.000 0.000 64 18 1 7,743,646 7,979,294 5.802 0.000 0.001
64 7 2 559,448 593,832 9.039 0.000 0.000 64 18 2 7,161,396 7,560,614 7.821 0.000 0.001
64 7 3 487,500 530,464 13.574 0.000 0.000 64 18 3 6,812,246 7,132,094 7.490 0.000 0.001
64 8 1 918,750 1,003,102 10.586 0.000 0.000 64 18 4 6,452,128 6,808,512 7.302 0.000 0.001
64 8 2 800,000 871,472 11.057 0.000 0.000 64 18 5 6,217,116 6,502,736 6.601 0.000 0.001
64 8 3 718,750 799,078 13.877 0.000 0.000 64 18 6 5,991,716 6,295,004 7.190 0.000 0.001
64 8 4 650,000 757,616 19.520 0.000 0.000 64 18 7 5,854,952 6,120,370 6.599 0.000 0.001
64 9 1 1,290,000 1,358,246 8.438 0.000 0.000 64 18 8 5,768,624 6,079,670 6.638 0.000 0.001
64 9 2 1,154,188 1,207,806 8.683 0.000 0.000 64 18 9 5,761,814 5,964,462 5.299 0.000 0.001
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Table 3. Cont.

n m m1 BKV BFV AD
[%]

SR
[%]

t
[sec] n m m1 BKV BFV AD

[%]
SR
[%]

t
[sec]

64 9 3 1,057,730 1,104,352 8.168 0.000 0.000 64 19 1 8,958,414 9,156,896 4.063 0.000 0.001
64 9 4 976,980 1,044,920 9.989 0.000 0.000 64 19 2 8,394,606 8,607,328 5.324 0.000 0.001
64 10 1 1,748,280 1,788,460 4.324 0.000 0.000 64 19 3 7,815,844 8,222,316 7.125 0.000 0.001
64 10 2 1,542,500 1,634,212 6.838 0.000 0.000 64 19 4 7,481,512 7,875,526 6.679 0.000 0.001
64 10 3 1,416,954 1,501,536 7.997 0.000 0.000 64 19 5 7,198,882 7,574,816 6.539 0.000 0.001
64 10 4 1,304,924 1,392,388 9.950 0.000 0.000 64 19 6 6,961,460 7,309,520 6.388 0.000 0.001
64 10 5 1,297,932 1,332,112 8.434 0.000 0.000 64 19 7 6,767,378 7,064,918 5.981 0.000 0.001
64 11 1 2,225,738 2,290,748 5.288 0.000 0.000 64 19 8 6,629,500 6,952,552 6.787 0.000 0.001
64 11 2 2,023,044 2,076,684 5.514 0.000 0.000 64 19 9 6,578,410 6,830,782 5.401 0.000 0.001
64 11 3 1,832,500 1,915,170 6.952 0.000 0.000 64 20 1 10,226,448 10,517,434 3.699 0.000 0.001
64 11 4 1,708,508 1,795,422 8.413 0.000 0.000 64 20 2 9,639,732 9,910,520 4.274 0.000 0.001
64 11 5 1,666,674 1,753,082 7.841 0.000 0.000 64 20 3 9,055,990 9,416,676 5.563 0.000 0.001
64 12 1 2,772,894 2,854,242 5.750 0.000 0.000 64 20 4 8,482,792 8,888,376 6.915 0.000 0.001
64 12 2 2,530,300 2,610,040 6.448 0.000 0.000 64 20 5 8,242,654 8,594,084 5.827 0.000 0.001
64 12 3 2,332,450 2,432,710 7.464 0.000 0.000 64 20 6 7,947,380 8,334,310 5.762 0.000 0.001
64 12 4 2,135,000 2,244,260 8.971 0.000 0.000 64 20 7 7,733,348 8,129,728 6.040 0.000 0.001
64 12 5 2,094,542 2,199,812 7.457 0.000 0.000 64 20 8 7,541,536 7,959,008 6.239 0.000 0.001
64 12 6 2,058,808 2,185,722 9.072 0.000 0.000 64 20 9 7,4520,98 7,695,586 5.576 0.000 0.001
64 13 1 3,391,510 3,516,412 5.260 0.000 0.000 64 20 10 7,419,404 7,681,794 5.535 0.000 0.001
64 13 2 3,117,606 3,247,566 6.789 0.000 0.000 64 21 1 11,537,304 11,779,998 3.440 0.000 0.001
64 13 3 2,883,878 3,054,264 8.015 0.000 0.000 64 21 2 10,944,262 11,233,234 3.737 0.000 0.001
64 13 4 2,682,128 2,883,948 9.364 0.000 0.000 64 21 3 10,359,224 10,691,492 4.562 0.000 0.001
64 13 5 2,575,000 2763746 9.017 0.000 0.000 64 21 4 9,791,688 10,301,198 5.978 0.000 0.001
64 13 6 2,535,680 2,645,876 7.006 0.000 0.001 64 21 5 9,287,240 9,813,644 6.822 0.000 0.001
64 14 1 4,073,442 4,124,748 6.906 0.000 0.001 64 21 6 9,030,702 9,414,508 5.731 0.000 0.001
64 14 2 3,767,164 3,938,116 6.487 0.000 0.001 64 21 7 8,795,182 9,193,420 5.686 0.000 0.001
64 14 3 3,504,318 3,739,058 8.121 0.000 0.001 64 21 8 8,571,828 8,927,104 5.878 0.000 0.001
64 14 4 3,248,604 3,460,336 9.205 0.000 0.001 64 21 9 8,442,646 8,770,372 5.575 0.000 0.001
64 14 5 3,131,906 3,357,136 8.918 0.000 0.001 64 21 10 8,349,142 8,770,990 5.904 0.000 0.001
64 14 6 3,027,500 3,218,330 8.926 0.000 0.001 64 22 1 12,922,754 13,137,430 2.686 0.000 0.001
64 14 7 3,020,756 3,155,456 8.318 0.000 0.001 64 22 2 12,252,800 12,637,734 3.935 0.000 0.001
64 15 1 4,803,016 4,998,654 7.116 0.000 0.001 64 22 3 11,671,958 11,983,748 4.157 0.000 0.001
64 15 2 4,467,502 4,630,860 7.929 0.000 0.001 64 22 4 11,113,084 11,539,630 5.017 0.000 0.001
64 15 3 4,167,234 4,451,480 8.768 0.000 0.001 64 22 5 10,602,386 10,990,008 4.841 0.000 0.001
64 15 4 3,909,108 4,226,464 10.262 0.000 0.001 64 22 6 10,104,188 10,547,594 6.131 0.000 0.001
64 15 5 3,746,844 3,960,880 8.556 0.000 0.001 64 22 7 9,872,662 10,275,716 5.915 0.000 0.001
64 15 6 3,609,580 3,919,934 9.932 0.000 0.001 64 22 8 9,618,052 10,004,572 5.390 0.000 0.001
64 15 7 3,517,500 3,697,084 9.693 0.000 0.001 64 22 9 9,483,714 9,902,300 5.608 0.000 0.001
64 16 1 5,568,750 6,023,910 9.766 0.000 0.001 64 22 10 9,344,104 9,782,968 5.666 0.000 0.001
64 16 2 5,210,000 5,656,588 9.616 0.000 0.001 64 22 11 9,342,556 9,675,646 4.871 0.000 0.001
64 16 3 4,888,750 5,203,500 9.443 0.000 0.001 64 23 1 14,411,076 14,606,470 2.797 0.000 0.001
64 16 4 4,580,000 5,013,788 10.901 0.000 0.001 64 23 2 13,718,236 14,031,986 3.435 0.000 0.001
64 16 5 4,408,750 4,827,872 10.779 0.000 0.001 64 23 3 13,051,236 13,353,810 3.397 0.000 0.001
64 16 6 4,250,000 4,540,838 10.744 0.000 0.001 64 23 4 12,471,980 12,812,272 4.138 0.000 0.001
64 16 7 4,128,750 4,575,034 12.484 0.000 0.001 64 23 5 11,942,532 12,371,092 4.570 0.000 0.001

The analytical solutions can be quite easily transformed to their “visual counter-parts”
and it is for the readers to judge about the quality of different generated color frames (see
Figures 4 and 5).
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Every square (dot) of the depicted graphical images is consisting of 100 = 10× 10 pixels in
Figures 4a,c,e and 5a,c,e and 4 = 2× 2 pixels in Figures 4b,d,f and 5b,d,f. 64 = 8 × 8 squares
constitute a single “template” and each 64-square-template is replicated times horizon-
tally and times vertically in patterns pattern-1, pattern-3, pattern-5, pattern-7, pattern-9,
pattern-11 and 20 times horizontally and 20 times vertically in patterns pattern-2, pattern-4,
pattern-6, pattern-8, pattern-10, pattern-12 (see Figures 4 and 5). Quantitative characteris-
tics (specifications) for each color pattern are summarized in Table 4.

Table 4. Quantitative characteristics (specifications) of color patterns.

Color Pattern ID m1 m2 m3
Color1 Color2 Color3

# Pixels Per Square
R G B R G B R G B

pattern-1 21 22 21 E4 C4 82 1B 3B 7D FF FF 00 100
pattern-2 21 22 21 E4 C4 82 1B 3B 7D FF FF 00 4
pattern-3 21 22 21 F1 51 55 0E AE AA FF FF 00 100
pattern-4 21 22 21 F1 51 55 0E AE AA FF FF 00 4
pattern-5 11 12 41 A0 66 F1 5F 99 0E FF FF 00 100
pattern-6 11 12 41 A0 66 F1 5F 99 0E FF FF 00 4
pattern-7 11 12 41 FF 00 00 00 FF 00 FF FF 00 100
pattern-8 11 12 41 FF 00 00 00 FF 00 FF FF 00 4
pattern-9 10 10 44 11 6B 8A EE 94 75 FF FF 00 100

pattern-10 10 10 44 11 6B 8A EE 94 75 FF FF 00 4
pattern-11 10 10 44 E0 40 AA 1F BF 55 FF FF 00 100
pattern-12 10 10 44 E0 40 AA 1F BF 55 FF FF 00 4

Remarks: 1. m2 = m − m1, m3 = n − m; m1, m2, m3 denote the numbers of squares (dots) of colors color1, color2, color3, respectively. 2. The values
of the colors’ components R (red), G (green), B (blue) are presented in a hexadecimal form (in accordance with RGB color model) [20]. 3. The
values of the components R, G, B of colors color1, color2 are generated randomly, while the third color color2 is always yellow (FF FF 00).

5. Conclusions

In this paper, we have introduced a new combinatorial optimization problem entitled
the color mix problem, which has practical potential applications in modern computer
graphics, multimedia, as well as the visual arts.

We have also proposed the hybrid genetic-iterated tabu search algorithm for heuris-
tically solving the color mix problem. The most important feature of the algorithm used
is that the genetic algorithm operators are hybridized with the hierarchical iterated tabu
search procedure, which, in turn, incorporates the efficient tabu search algorithm combined
with mutations of solutions and fast greedy adaptive search procedure. This results in a
smart hybridization scheme with effective optimizer of the offspring solutions.

The genetic algorithm was examined by using various data instances. The results
from the experiments confirm the promising performance of the proposed algorithm for
the solution of the color mix problem.

As to the future research direction, it is worthwhile to study the behaviour of the
proposed algorithm on bigger data instances and also to adapt our algorithm for problems
with larger numbers of colors.
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