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INTRODUCTION 

Relevance of the Research 

Computer-aided three dimensional (3D) processing of medical images is 

becoming an important way to reduce the time of pathology diagnosis, to confirm an 

accurate treatment plan, or to evaluate the postoperative follow-up (1). 3D 

segmentation is one of the most important steps in medical image processing (2). 

This is important in many different disciplines of medicine (3 – 5). With the 

increasing amount of medical data through the use of various imaging modalities 

(X-ray, magnetic resonance imaging (MRI), nuclear medicine, ultrasound), the time 

to segment selected volume of an anatomical region should be reduced. There are a 

variety of different software packages that can segment selected anatomical regions. 

However, segmentation is usually based on manual segmentation, where the final 

result depends on the experience of the user. For this reason, time and experience are 

the most important factors affecting the quality of segmentation (6, 7). The same 

reason is relevant in dentistry, especially, in oral and maxillofacial surgery, 

orthognathic surgery and orthodontics, where the accuracy of facial bones 

segmentation is important to ensure the accurate diagnosis of facial asymmetry (8), 

to prepare an accurate virtual surgical plan (VSP) (9), or to successfully follow  the 

patient’s condition during (10) or after treatment (11). In the last decade, Cone Beam 

Computed Tomography (CBCT) has become the most popular imaging modality 

due to its lower radiation dose and shorter acquisition time compared to 

conventional multislice CT. However, the images of CBCT are usually noisy and 

have beam hardening artefacts. The technical parameters of CBCT also affect the 

ability to correctly display Hounsfield units (HU) of head tissues (immediately after 

surgery when soft tissue edema is present) in contrast to the conventional CT (12, 

13). These disadvantages also affect the image quality and the accuracy of bone 

segmentation (14). For these reasons, 3D VSP and evaluation of postoperative 

follow-up must be performed by using segmentation by highly experienced 

surgeons. 

Unfortunately, currently, there are no accurate and reliable methods to perform 

segmentation automatically, rapidly, and accurately that can be applied in clinical 

practice. Wang et al. published three studies dedicated to fully automated bone 

segmentation using CBCT images (6, 15, 16). In the studies of 2013 (6) and 2014 

(15), the principle of the automatic method was patch-based sparse representation. A 

patient-specific atlas (probability map) with a sparse label fusion strategy from the 

conventional CT atlases was used as a first estimation. Then, a convex segmentation 

framework was used to obtain the final result. The presented method resulted in 

accurate segmentation, but the main limitation of this method was the computational 

time (about 5 h (15)). In addition, the variety of CBCT datasets (patients with 

metallic implants, metallic plates, and various facial asymmetries) in their studies 

was low. Data collection from CT, with the objection to obtain more variety of 

atlases, is complicated in terms of bioethics requirements. In a study from 2016 (16), 

the same authors also proposed a new automatic method that used the random forest. 



 11 

 

The multiclass classifier was used to create probability maps for each region of 

interest (the mandible, the maxilla, and the background). The results of the method 

were almost the same as in the previous study (15), but they also suffered from some 

similar limitations: the limited amount of CBCT data and also the relatively high 

computational time of segmentation (20 min). Minnema et al., 2018 (17) proposed a 

fully automatic method based on the convolutional neural network (CNN). The fully 

automatic CNN was able to accurately segment the skull. However, the efficiency of 

the method was evaluated only with CT datasets which are much less noisy 

compared to CBCT datasets. The variety of segmented anatomical regions could 

also be increased. Gollmer et al., 2012 presented a fully automatic method for 

mandible segmentation. In this research, segmentation was based on the idea of 

using the statistical shape model (SSM). The method showed accurate results, 

however, like the previous authors, the researchers also tested the algorithm with 

only six CBCT datasets (18). Fan et al., 2019 (19) proposed an automatic method 

for mandible segmentation. In their study, the marker-based watershed transform 

method was used. The authors performed accurate and sufficiently fast (12–14 min 

per dataset) segmentation on 20 CBCT datasets. Segmentation errors were obtained 

mainly in the three basic regions – around the wisdom teeth, condyles and dental 

enamel. The reasons for the segmentation errors were the different (greater) or equal 

intensity of the selected basic markers (the mandible and the background). 

Performing manual processing in these regions was recommended. Eijnatten et al., 

2018 (20) performed a literature review of different bone segmentation methods. 

The authors found that global thresholding is the most commonly used method for 

bone segmentation. However, a limitation of this method is that it requires manual 

post-processing. 

Scientific-technological questions 

The scientific-technological questions that are being resolved in this thesis are: 

How can segmentation of facial bones be performed independently of the 

operator’s influence on the segmentation result? 

How can automatic segmentation of facial bones be as accurate as the one 

performed by an experienced operator and be performed within a significantly lower 

amount of time and without the use of large computer computing resources? 

Working Hypothesis 

 It is possible to perform automatic segmentation of facial bones independently 

of the operator’s influence and the variability of the segmentation result. 

 It is possible to apply automatic segmentation in order to reduce the time 

required to prepare a VSP and evaluate the condition of the facial bones. 
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Research Object 

The research is based on the development and investigation of the methods for 

automatic segmentation of facial bones in CBCT datasets (pre- and post-operative) 

in accordance with the preparation of 3D VSP and monitoring of facial bones during 

the treatment.  

The Aim of the Research 

To develop and investigate the automatic method for facial bones 

segmentation in cone beam computed tomography datasets (CBCT). 

 

The Objectives of the Research 

1. To investigate the distribution of volumetric elements (voxels) in the 

preoperative and postoperative CBCT datasets by Hounsfield units (HU). 

2. To develop an automatic method to perform the segmentation of facial 

bones in CBCT dataset. 

3. To investigate the influence of the 3D sliding window on the segmentation 

results. 

4. To investigate and evaluate the efficiency of the proposed automatic method 

for facial bones segmentation by using clinical CBCT datasets. 

Scientific Novelty 

 In this doctoral thesis, an automatic method for facial bones segmentation in 

the CBCT dataset was developed. The segmentation of facial bones is automated by 

using locally assessed distribution of voxel intensities. Three basic elements are used 

to implement the automatic segmentation: a 3D sliding window, a histogram filter, 

and thresholding based on Otsu’s method. The 3D window allows finding optimal 

thresholds based on Otsu’s method in the local volumes of the analyzed CBCT 

dataset. Accordingly, the influence of the operator on the result of facial bones 

segmentation is reduced. Fast and efficient segmentation of facial bones is achieved 

by using CBCT datasets with different quality – obtained before orthognathic 

surgery and one week after orthognathic surgery, when the patient’s soft tissue is 

most swollen. 

Practical value of the work 

 The developed automatic method could serve as a tool for various software 

products to perform facial bones segmentation.  

 It could also be used for inexperienced operators (doctors, medical 

engineers) automatically to obtain bone segments for performing VSP or 

assessing bone changes after surgery. 
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 The automatic method for facial bones segmentation reduces the time to 

perform the segmentation. The method does not require access to a 

computer with high computing power. 

The statements presented for defense  

1. Local thresholding can be used to find optimal thresholds when analyzing 

CBTC datasets. Segmentation becomes more objective and independent of 

the operator’s experience. Local thresholding is less time consuming 

compared to with manual or semi-automatic segmentation. 

2. A fast and efficient method for the segmentation of facial bones from CBCT 

datasets has been developed. The volume differences between automatically 

segmented facial bones and the reference (segmented by an experienced 

surgeon) were statistically insignificant (p > 0.05). 

3. The proposed facial bones segmentation method is superior to other 

automatic methods (Wang et al., 2016; Fan et al., 2019, van Eijnatten et al., 

2017) found in the current scientific literature in terms of the segmentation 

speed and efficiency. 

Approbation 

 In total, the results of the doctoral dissertation have been published in 2 

publications: 2 papers have been published in foreign periodic journals referred in 

the Journals of the Master List of Thomson Reuters Web of Science (with the impact 

factor). The results were presented in 3 international scientific conferences held in 

Finland (Tampere) and in Lithuania (Vilnius, Kaunas). 

Structure and contents of the dissertation 

 The dissertation consists of an introduction, four chapters, general conclusions, 

the list of references, and the list of publications of the author. The dissertation is 

organized as follows: 

1. In the first chapter, the clinical significance of segmentation of facial bones 

is presented. The main applications (evaluation of facial asymmetry, 

preparation of a virtual surgical plan, fabrication of patient-specific surgical 

guides, and the further patient’s follow-up) of facial bones segmentation 

were reviewed. 

2. In the second chapter, a critical review was carried out in order to analyze 

the currently existing methods for the automatic segmentation of facial 

bones from CBCT datasets. The main problems of the reviewed methods 

were determined. The main factors affecting the quality of the CBCT dataset 

were also reviewed. The histograms of conventional multislice CT and 

CBCT datasets were analyzed based on the reviewed scientific literature. 

3. In the third chapter, experimental investigation of the limitations of CBCT 

imaging and the evaluation of a reference scanning system were performed. 
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4. In the fourth chapter, the concept of the proposed automatic segmentation 

for facial bones from CBCT datasets was proposed. Optically scanned 

anatomical models (mandibles) were used to evaluate the influence of a 3D 

sliding window on the segmentation results. 

5. In the fifth chapter, investigation of the proposed automatic method for 

facial bones segmentation was performed with clinical data (forty CBCT 

datasets were used in the research). 

6. General conclusions are presented in the final chapter.  

The overall volume of the dissertation is 95 pages, including 64 figures, 13 

tables, 23 equations and 161 bibliographic references.   
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1 CLINICAL SIGNIFICANCE OF FACIAL BONES SEGMENTATION 

1.1 Medical background 

1.1.1 Anatomy of facial bones 

The facial bones are composed of fourteen bones: Nasal {2}, Lacrimal {2}, 

Inferior nasal concha {2}, Maxilla {2}, Mandible {1}, Vomer {1}, Zygomatic {2}, 

Palatine {2} (Fig. 1.1). 

 

Fig. 1.1. Facial bones (21) 

The facial bones form a skeleton which is a structure with bilateral symmetry 

as it consists of two mirror parts that are roughly symmetric about the vertical plane 

(22). However, the bilateral face is largely a theoretical concept that rarely exists in 

living organisms. Right and left differences occur everywhere in the nature where 

two bilateral parts present in an entity (23). 

1.1.2 Facial asymmetries 

The etiology of asymmetric face could be divided into three main categories 

(24 – 26): 

1) Genetic or congenital malformations; 

2) Environmental factors; 

3) Functional deviations. 

 

The most common genetic diseases affecting the asymmetric face are as 

follows (24 – 27): 

 Cleft lip and palate; 

 Tessier craniofacial cleft; 
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 Hemifacial macrosomia; 

 Neurofibromatosis; 

 Torticollis; 

 Craniosynostosis; 

 Vascular disorders; 

 Osteochondroma; 

 Others. 

 

Environmental factors are associated with traumas, infections and habits. If 

these factors are not treated, then, some kind of diseases will be provoked, e.g., 

temporo mandibular joint ankylosis, facial trauma, fibrous dysplasia, facial tumors, 

etc. These diseases are very dangerous for growing children or old people. Damage 

or inflammation of the trigeminal nerve may lead to an asymmetric face. It is a cause 

of the loss of muscle function and tone. Injurious habits, such as sucking or 

chewing, can cause asymmetric face. Functional deviations are related with the size 

of the teeth and their position in the arches and the position of the dental arches in 

the upper and lower jaws. It causes the mandible shift during the opening and 

closing.  

The asymmetric face has influence on the quality of life because it can cause 

physiological, psychological and emotional consequences (28, 29).  

 

Physiological consequences 

 Performed studies (28 – 30) showed these main physiological consequences 

caused by facial asymmetries (FAs). People with FAs:  

 

 can feel a headache more frequently than people without FAs; 

 are slightly more likely to complain of an upset stomach and other 

gastrointestinal problems, it can cause nutrition disorders, such as obesity 

or malnutrition; 

 can have trouble in concentrating, feel jittery (symptoms of depression, 

anxiety), these problems can lead to a physical illness, or to physical 

distress;  

 have more problems with breathing, especially during the sleep – 

obstructive sleep apnea is the most common symptom which can lead to 

cardiovascular diseases; 

 more often complain about muscle soreness, muscle cramps and muscle 

aches. 

 

Psychological and emotional consequences 

 Psychological and emotional consequences are frequent for people with FAs 

(28, 29, 31, 32). People with FAs: 

 have more frequent moods swings, are more depressed; 



 17 

 

 can feel less attractive, more often have a lower self-esteem. They can be 

less sociable. The performed studies (31, 32) showed that female and male 

subjects with FA can have problems in the mate choices;  

 can have higher levels of angriness, they can be more obsessive, far more 

impulsive and more emotional, less vigorous, less active, they may spend 

less time making important decisions. 

The prevalence of the asymmetric face can range from 21% to 85% (33 – 37). 

This variation is affected by the sample characteristics of the norm or the kind of 

asymmetry, the methods and the tools of evaluation and the criteria of symmetry. 

The purpose of asymmetric face treatment is to help the patient to increase their self-

esteem, to positively impact patient’s psychological and emotional state of mind, 

and to eliminate physiological consequences. There are different but related to each 

other approaches to treatment in order to achieve the above mentioned goals. 

1.2 Application of 3D facial bones segmentation 

The task of 3D segmentation is to identify volume elements (voxels) which are 

the regions of interest (ROI) in the selected dataset (38). This is an important step in 

the current medical image analysis. Accurate segmentation is important in surgical 

planning and monitoring of the examined anatomical region (2, 39). This is very 

important and significant in oral and maxillofacial surgery, orthognathic surgery 

(40), orthodontics (41), in the area of additive manufacturing to fabricate patient-

specific guides (42). 3D segmented facial bones can help more completely and 

precisely evaluate the condition of facial bones, prepare VSP, follow bones changes 

during or after treatment at different time points, construct drill guides, cutting 

guides and medical implants (43 – 45). Conventional 2D diagnostic radiographs 

(submento-vertex projections, posteroanterior radiography) have limitations, such as 

projection and identification errors in asymmetry diagnosis or performing an 

accurate treatment plan (Fig. 1.2) (46, 47). 

 

Fig. 1.2. 2D conventional cephalometric analysis (on the left side), 3D cephalometric 

analysis (on the right side) (47) 
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 Cephalometric analysis on 3D model is denoted by obvious advantages. It can 

enable to more accurately evaluate the main distances between anatomical regions, 

can help to simulate the surgery before entering the operating room also evaluate the 

results after the surgery (47, 48). 
 

1.2.1 Application of segmented facial bones for the evaluation of bone condition  

 Teeth are a part of the face, teeth are not a part of facial bones; however, the 

3D segmentation of teeth is also important in the dental practice. Dental asymmetry 

can be caused by such local factors as early loss of the primary teeth, congenitally 

missing teeth, and such habits as thumb sucking. Lack of exactness in genetic 

expression affects the teeth on the right and left sides, causing asymmetries in 

mesio-distal crown diameters (24). The 3D segmentation of teeth is needed to 

determine the targeted orthodontic treatment planning and simulation, oral and 

maxillofacial surgery, dental implants. There are two main technologies in order to 

acquire 3D teeth models: intraoral/extraoral (desktop) scanning, and 3D 

segmentation from the CT/CBCT dataset. Intraoral and extraoral technologies 

enable to obtain the surface geometry of anatomical regions. It is a conventional 

way; however, it cannot enable to provide information about the roots of teeth, or to 

evaluate the density of teeth (Fig. 1.3) (49, 50). 

 

Fig. 1.3. 3D teeth models: A – segmented by the global thresholding method from 

CBCT dataset; B – scanned with intraoral scanner (50) 

The quality of segmented teeth crowns from a CBCT dataset is lower 

comparing with intraoral/extraoral scanning. By combining the 3D segmentation 

technique with the intraoral/extraoral technique and applying the 3D 

superimposition method, the most accurate results can be achieved (50, 51). 3D 

positions of the whole teeth including their roots which were segmented from the 

CBCT dataset and dental crowns scanned with a consecutive intraoral scanner can 

be evaluated after superimposition (Fig. 1.4). This representation of teeth is useful in 

the clinical practice when teeth have metallic braces which can create metallic 

artefacts in the CBCT dataset. Due to this reason, accurate evaluation of an 

individual tooth or all the teeth can be performed.  
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Fig. 1.4. Superimposed segmented teeth from CBCT dataset and scanned teeth by using 

intraoral scanner (50) 

The surface of the crown is selected as the reference area for superimposition. 

The presented results are useful in orthodontic, implantology practices, oral and 

maxillofacial surgery. The positions and condition of the teeth roots can be 

evaluated very accurately by 3D segmentation results. The further treatment can be 

prescribed (50, 51). 

 3D segmentation of facial bones can help to evaluate skeletal asymmetry more 

precisely. Skeletal asymmetry is classified into three main classes: Class I, Class II 

and Class III (Fig. 1.5) (52). 

 

Fig. 1.5. Illustration of Class I, Class II and Class III facial skeletal profiles. Also, the 

relationship of molars is indicated (arrows) (52) 

 Class I: the maxillary base is in the normal anteroposterior relationship to the 

mandibular base. Class II: the mandibular base is posterior (caudal) to the maxillary 

base because of maxillary prognathism, mandibular retrognathism, or both. Class 

III: the mandibular base is anterior (ventral) to the maxillary base because of 

maxillary retrognathism, mandibular prognathism, or both (52). The main protocol 

in order to evaluate the position and condition of facial bones is the acquisition of 

CBCT / CT images, 3D segmentation of facial bones, and the evaluation of dental 

cast models, or 3D segmentation of teeth.  
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Fig. 1.6. Segmented preoperative facial bones from CT datasets. A – 3D facial bones in order 

to evaluate skeletal asymmetry (53), B – 3D facial bones in order to evaluate the size of a 

tumor (54), C – 3D facial bones in order to evaluate the ankylosis of the temporomandibular 

joint (TMJ) (55) 

 3D segmentation of facial bones can expand the opportunities to perform 

accurate analysis and diagnosis of various clinical cases (Fig. 1.6 A, B, C), evaluate 

the position of teeth before the surgery (Fig. 1.6 A), evaluate the size of a bone 

defect affected tumor (Fig 1.6 B), or evaluate the condition of TMJ ankylosis before 

the surgery (Fig. 1.6 C). Accurate segmentation of facial bones provides for more 

accurate diagnosis and ensures a decrease of the time of treatment (54).  

1.2.2 Application of segmented facial bones for the preparation of VSP 

 Accurate analysis and performed accurate 3D segmentation of facial bones are 

critical procedures in order to get the best results of the prescribed treatment and to 

improve the appearance and the quality of life of patients who undergo oral and 

maxillofacial, orthognathic surgeries (56). The 3D data can enable to get more 

detailed information about the facial bones. Due to this reason, diagnosis becomes 

more accurate (57). Segmented 3D facial 

bones are necessary used to create 3D 

cephalometry and perform 3D surgical 

simulation of the selected bones. 3D 

cephalometry is created by the reference 

planes. Most commonly, the following 

reference planes are selected: Midsagittal 

(MSP, defined as the plane perpendicular to 

the FH plane and passing through nasion and 

basion), Frankfort horizontal (FH, defined as 

the plane passing through the bilateral orbitale 

and the right porion) and Coronal (CoP, 

defined as the plane passing through the right 

porion and perpendicular to the FH plane and 

MSP) (Fig.1.7). Despite these reasons, the 

orientation of the reference planes depends on the quality of 3D segmentation. The 

Fig. 1.7. Reference planes (MSP, FH 

and CoP) for accurate head orientation 

performance (58) 
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reference planes are also used to perform the accurate orientation of the head. This is 

the most important factor for 3D analysis and the performance of VSP (58 – 61). 

VSP is performed by the translation and rotation of the selected anatomical segment 

or segments (proximal segments, maxillary segments, mandible body, chin), and 

also the maxillomandibular complex (Fig. 1.8).  

 

Fig. 1.8. Three-piece Le Fort I and bilateral sagittal split osteotomy (BSSO) for the final 

position of facial bones (62) 

VSP could be implemented by the most popular software packages: Mimics 

(63), Dolphin imaging (64), NemoFab (65).  

1.2.3 Application of segmented facial bones for the fabrication of patient-specific 

surgical guides  

The application of patient-specific surgical guides can improve the accuracy of 

the surgery (66, 67). 

                  

  

 

 

 

 

 

 

 

 

Fig. 1.9. A – The cutting guides (red plates) designed by the planned cutting of osteotomy 

and ostectomy. B – The custom plates (red plates) designed to fit the bony surface above the 

Le Fort I osteotomy line. C – The cutting guide (red plate) designed by the panned cutting of 

osteotomy and ostectomy (69) 

A B 

C 
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The quality of facial bones segmentation influences the accuracy of patient-

specific guides and the success of the surgery (68). The application of patient-

specific surgical guides is important in oral and maxillofacial, orthognathic (69, 70), 

and craniomaxilofacial surgery (67, 71). 

Patient-specific guides are designed individually. The fabrication of guides 

depends on the segmented facial bones from the CT/CBCT dataset, the patient’s 

pathology and the surgeon’s requirements for the design. Patient-specific guides 

could be fabricated by the technologies of selective laser sintering (SLS) (69), 

selective laser melting (SLM) (72), electron beam melting (EBM) (69) applied in 3D 

printing or by using milling machines (73).  

 

1.2.4 Application of segmented facial bones for further patient’s follow-up  

During the last decade, the evaluation of the treatment results is performed by 

using 3D segmentation of facial bones and the selected superimposition techniques 

(74 – 76). Superimposition by using 3D models can provide accurate and 

reproducible results, while also offering high efficiency and increased post-

processing capabilities (77). There are some important factors for obtaining accurate 

evaluation by using 3D models: to use the same parameters during CBCT scanning, 

to precisely select a threshold value, or to use an appropriate method of CBCT scan 

segmentation in order to get an accurate 3D model (78 – 80), to select (a) stable 

reference anatomical area/s so that to perform the superimposition of a 3D model 

(81 – 83). It depends on what kind of research is performed. After the 

implementation of these steps, the process of evaluation becomes accurate and 

objective. 

The implementation of different techniques of superimposition is divided into 

three main groups: 1. landmark-based, 2. surface-based and 3. voxel-based. The 

superimposition of 3D models is most commonly implemented by the landmark-

based technique (84) or by the surface-based technique (84, 85). The landmark-

based superimposition technique is more frequently used to perform the initial 

superimposition when the position of two 3D models under comparison is very 

different in the digital space. It is a fairly time-consuming and imprecise technique. 

The final result of superimposition by the landmark-based technique depends on the 

quality of the 3D models and the user’s experience. The idea of the landmark-based 

method is to select landmarks on anatomical placements which should be stable 

(non-operated, not growing). An accurate result is achieved when the positions of 

the selected pairs of landmarks on 3D models are similar (86). 

After the initial superimposition (by the landmark-based technique), the 

surface-based technique is used to increase the accuracy of superimposition (85). 

The surface-based technique is semi- or fully automatic. The implementation of the 

surface-based superimposition technique is the base of the iterative closest point 

algorithm. The performance of surface-based superimposition is rapid. The accuracy 

of superimposition by the surface-based technique most often depends on the quality 

of 3D models and the selected anatomical areas. More complex investigations are 

needed in the studies of growing anatomical structures in order to get accurate 
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results of superimposition by using the surface-based technique (86). This is typical 

for young, growing patients (children) because there is difficulty in finding a stable, 

non-growing anatomical structure which could be used as a reference for the 

implementation of the superimposition (87). More complicated cases were solved by 

(88).  

The superimposition by the voxel-based technique is used to evaluate the 

changes of condyles during orthodontic treatment (89), to follow bone changes after 

a surgery at different time points, or to evaluate the accuracy of the performed 

surgery (90 – 93). The reference anatomical structure as in the previously described 

superimposition techniques must be stable. For the anatomical changes of the 

mandible, mandibular symphysis is used in order to accurately perform 

superimposition (89). For the assessment of maxillary changes or for the evaluation 

of the accuracy of the performed surgery, the cranial base is used as the reference 

structure (Fig. 1.10) (92). 

 

Fig. 1.10. Workflow of voxel-based superimposition. Cranial base (marked on the top blue 

color dashed rectangle) was selected as the reference anatomical structure in order to 

superimpose the same patient’s CBCT datasets (92) 

After the voxel-based superimposition, the 3D segmentation of facial bones is 

performed. If the superimposition was performed accurately, the segmented bones 

(3D models) should be in the same position of the 3D space.  

The results of the superimposition could be evaluated by the 3D color coded 

map (Fig. 1.11). The distances between two superimposed 3D models are coded by 

colors. Each color represents the distance differences by the selected measure of the 
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International System of Units (SI) (µm, mm or cm). The positive values of the scale 

represent the regions that are in front of the reference 3D model. The negative values 

of the scale represent the regions that are behind the reference 3D model. The 

middle values of the scale represent the regions that have minimal differences 

between the superimposed 3D models (93, 94). 

          

Fig. 1.11. Distance differences between VSP and the surgical result after voxel-based 

superimposition by the 3D color coded map (units – mm) (93) 

The 3D color map helps surgeons perform preoperative evaluation, treatment 

planning, and the evaluation of the surgical results (58, 94). A 3D color map can be 

applied after each technique of superimposition for the visualization of surface 

differences. 

 

1.3 Conclusion of the chapter 

1. An asymmetrical face is common in the population.  Facial asymmetries can 

cause physiological, psychological, and emotional consequences. These 

consequences have an important impact on people’s daily lives.  
 

2. 3D segmentation of facial bones helps doctors more accurately evaluate the 

condition of facial bones, prepare an accurate virtual surgical plan, and 

follow changes of facial bones during or after the treatment. 
 

3. Accurate 3D segmentation of the facial bones ensures accurate fabrication 

of the patient-specific surgical guides, which can improve the accuracy of 

the surgery. 
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2 OVERVIEW OF EXISTING METHODS FOR THE FACIAL BONES 

SEGMENTATION IN CBCT DATASET 

The main methods for the facial bones segmentation by implementation could 

be divided into the following: manual segmentation, global thresholding, edge 

detection, and region growing (20). 

2.1 Manual segmentation 

The implementation of manual segmentation is based on manually selecting 

the voxels or the boundary of anatomical regions, and it is most commonly 

considered as the ground truth (gold standard) method. The accuracy of the proposed 

new segmentation methods is usually evaluated by comparing the obtained results 

with the results performed by manual segmentation (95 – 98). The result of manual 

segmentation basically depends on the experience of the user (a clinical expert, or a 

medical engineer). The manual segmentation method is considered to be an accurate 

method, however, looking from the labor costs point of view, it is highly time-

consuming (95). The main workflow of the strategy how manual segmentation is 

performed is presented in Figure 2.1. 

 

Fig. 2.1. Workflow of manual segmentation by the selected voxels of mandible 
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Contrast adjustment of images is performed in order to highlight the voxels of 

the region of interest. Finally, segmentation is done by manually selecting voxels in 

different views (axial, coronal and sagittal) of CBCT.  

2.2 Segmentation by the global thresholding  

Most often, manual segmentation is performed by combining the global 

thresholding method (2.1) by the selected HU (grey level). This is important when 

certain anatomical regions are lost after global thresholding. Therefore, 

segmentation is completed by selecting the missed voxels slice-by-slice in the axial, 

coronal and sagittal views manually (99).  
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 where, g(x,y,z) is the matrix of the segmented area, θ is the selected value of 

the global threshold, f(x,y,z) is the original dataset matrix.  

 The global thresholding method notably and, most commonly, cannot 

accurately segment the sensitive anatomical areas (condyles and sinuses) or the 

images in which some kinds of artefacts (metal, beam hardening) or noise (17) are 

present. In Figure 2.2 A, a mandible is presented which is segmented by the global 

thresholding technique (selected value 350 HU). The condyles of the mandible are 

not fully segmented (Fig. 2.2 A). In order to obtain the full segmentation of 

condyles, manual segmentation is required. The result after manual segmentation is 

presented in Figure 2.2 B. 

                

Fig. 2.2. Segmented mandible by using global thresholding (A) and manual segmentation (B) 

techniques. Dashed circles mark sensitive anatomical areas (condyles) for segmentation 

This dual method to perform segmentation is usually used in the clinical 

practice in order to get an accurate 3D model. However, when applying the global 

A B 
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thresholding method, extensive manual post-processing (manual segmentation) is 

required (17). This process takes time as well as experience. 

The global threshold value could be selected manually by evaluating the 

histogram of CT/CBCT datasets (100). In Figure 2.3, we present an example which 

shows what are the differences of the user-selected threshold values when 

segmenting facial bones by using CBCT and CT datasets. 

 

 

Fig. 2.3. Threshold values (HU) selected by four users in order to segment facial bones (100) 

 The presented results show that the user-selected grey values were closer to 

the soft tissue when the objective was to segment bone segments more fully. The 

performed study showed that there is no single threshold value for all facial bones. 

The results of segmentation were compared with the results of the optical scanner. 

The achieved results demonstrated surface inaccuracies ranging from −2.3 to +4.8 

mm (CBCT). The final segmentation showed that the result depends on the quality 

of the data and the experience of the observer. In this study, segmentation was 

performed by medical engineers. Also, different CBCT, especially the CT device, 

generates not the same grey values of the investigated anatomical area. Due to this 

reason, global segmentation becomes more complicated when the threshold is 

selected manually (100).  

 Global segmentation could be implemented by adapting automatic methods. 

One of them is N. Otsu (further referred to as Otsu’s) method (101) where the 

optimal threshold value is found from the grey level histogram automatically. The 

optimal threshold value is found by using the discriminant criterion when trying to 
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maximize the separability of the resultant classes in the grey level histogram. The 

basic drawback of this method is that the histogram under analysis must be bimodal, 

i.e., it should have two expressed peaks of grey levels. This means that the intensity 

values of the voxels must be divided into two basic classes C0 with the intensity 

range [1, ..., T] and C1 with the intensity range [T + 1, ..., L] (where L is the upper 

limit of intensity in the volume), with T representing the threshold optimally 

separating modes in the bimodal histogram. The number of the voxels with the 

intensity threshold i is denoted by ni. The probability of intensity threshold i in the 

image is (101): 

N

n
p i

i  ,   (2.1) 

 N – the total number of voxels. Then, the probabilities that randomly selected 

voxels belong to one of the classes C0 or C1 are: 
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 The intensity average of the total image is defined by: 

T  1100 ,  (2.6) 

110  .  (2.7) 

 By using discriminant analysis, Otsu’s method defines the variance of both 

classes of the thresholded image as: 
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 Then, the optimal threshold value is calculated by: 
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 The histogram of the CBCT dataset is not bimodal, and Otsu’s method will not 

work accurately if we use it to find the accurate threshold value.  

 According to this, Barandiaran et al., 2009 (102) proposed an automatic 

method for the segmentation of mandibles from CT datasets. These authors used 

Otsu’s method in order to compute the appropriate thresholds. The most accurate 

segmentation results were achieved by using three threshold classes. A binary image 

mask was created by computed threshold values by using Otsu’s method. The final 

segmentation was performed by using the region growing method. Twelve different 

CT datasets were used. The average computational time to perform the segmentation 

was as little as 10 seconds per dataset. However, any metrics in order to evaluate the 

accuracy of the segmentation by the using proposed automatic method were not 

used. 

 Indraswari et al., 2019 (103) proposed automatic segmentation of the 

mandibular cortical bone in CBCT datasets (Fig. 2.4). The Gaussian mixture model 

(GMM) for histogram thresholding was used. The proposed method gives the 

average accuracy, sensitivity, and specificity value of 96.82%, 85.96%, 97.60%, 

respectively. The segmentation by using the proposed method (GMM) was 

compared with Otsu’s method (101) and histogram cluster analysis (HCA) (104). 

The achieved results showed that the segmentation results by Otsu’s method and 

HCA are very similar. The authors did not specify how many CBCT datasets were 

used in their study. 

 

Fig. 2.4 Anatomical regions for segmentation (103) 

 The authors tested the proposed method with a limited CBCT field of view 

(FOV). The anterior part of the mandible not involving the whole mandible was 

used to perform automatic segmentation. 
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2.3 Segmentation by region growing 

 The main goal of this region based image segmentation method is to partition 

an image into regions. The basic steps to implement this method (105) are: 

 An initial set of small areas is iteratively merged according to similarity 

constraints. 

 The process is started by choosing an arbitrary seed pixel and comparing it 

with the neighboring pixels. 

 The region is grown from the seed pixel by adding in the neighboring 

pixels that are similar, thus increasing the size of the region. 

 When the growth of one region stops, we simply choose another seed pixel 

which does not yet belong to any region and start again. 

 This process is continued until all the pixels belong to some region.  

 The region growing method was created to segment regions of interest from 

2D images. However, some scientists applied this method for 3D segmentation of a 

bone (106, 107). Minnema et al., 2018 (17) applied the concept of this method in 

order to create a fully automatic method for bone segmentation by using the 

convolutional neural network (CNN). CNN was trained with CT datasets acquired 

by using six different scanners. 

 

Fig. 2.5. Architecture of the presented method by using CNN with four blocks (17) 

All CT scans were normalized by rescaling the voxel values between 0 and 1. 

Voxels were used to create 33 × 33 patches centered on each voxel. The created 

patches contained the intensity values of the surrounding voxels. The patches were 

then used to train CNN to classify the center voxel of each patch as either ‘bone’ or 

‘background’. The achieved results were compared with the 3D models created by 

an experienced medical engineer. The accuracy of the proposed method was 

evaluated by Dice similarity coefficient (DSC) (the mean value of DSC = 0.92 ± 

0.04) and the mean surface deviation (mean deviation = 0.44 mm ± 0.36 mm). The 

segmentation of a full CT dataset was approximately an hour. The achieved results 

showed very high accuracy of segmentation. The study was performed by using CT 

datasets where the quality of data is higher than the CBCT data. Also, the authors 
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did not test the proposed method for mandible segmentation. A large amount of data 

for training is needed.  

Wang et al. published two studies in 2013 (6) and 2014 (15) to represent a new 

automatic method for bone segmentation estimating a patient-specific atlas by using 

the sparse label fusion strategy from spiral CT atlases. The aim of the presented 

method was to segment separately three anatomical regions: the mandible, the 

maxilla, and the background from CBCT datasets, and also to separate the mandible 

from the maxilla. Patient-specific atlases were created by using spiral CT datasets. 

The authors estimated a patient-specific atlas from spiral CT atlases by using the 

sparse label fusion strategy. The second step was to integrate an estimated patient-

specific atlas into a convex segmentation framework based on the maximum a 

posteriori probability (MAP) for accurate segmentation (Fig. 2.6). 

 

Fig. 2.6. Flowchart of the proposed methods (15) 

The authors applied a patient-specific atlas in order to increase the amount of 

the analyzed information (e.g., the anatomical pattern) about the patient in this 

study. The results of segmentations were very accurate. The calculated metrics in 

order to evaluate the method efficiency were: DSC, mean surface distance (MSD), 

and Hausdorff distance (HD) (Table 2.1).  

Table 2.1. The calculated metrics by using the automated segmentation of a CBCT 

image using spiral CT atlases and convex optimization (6) and automated bone 

segmentation from dental CBCT images by using patch-based sparse representation 

and convex optimization (15) 

Metrics 
Region of 

interest 
Wang et al., 2013 (6) Wang et al., 2014 (15) 

DSC 
Mandible 0.91 ± 0.02 0.92 ± 0.02 

Maxilla 0.87 ± 0.02 0.87 ± 0.02 

MSD, mm Mandible 0.61 ± 0.17 0.65 ± 0.19 

HD, mm Mandible 0.92 ± 0.47 0.96 ± 0.53 

When comparing the calculated metrics, the authors showed very similar 

results of segmentations. However, the automatic segmentation by the proposed 

method is performed for a long time. The mean time to perform one segmentation is 

about 5 h (15). Due to this reason, the application of segmentation would be a hard 

task in the ‘real’ clinical practice.  

The same group of scientists (16) presented a new method for bone 

segmentation by using the random forest method. The multiclass classifier was used 
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to create probability maps for each region of interest (the mandible, the maxilla and 

the background). The achieved results were compared with the ground truth 3D 

models (segmented by two experienced surgeons). In this study, 30 CBCT datasets 

were used. The proposed method consists of four main steps: 1) estimation of the 

initial probability maps with majority voting; 2) extraction of CBCT appearance and 

context features; 3) training of random forest based classifiers; 4) repeating Steps 2 

and 3 until convergence. The method flowchart is presented in Figure 2.7. 

 

Fig. 2.7. Flowchart of the random forest method with the main steps in order to 

perform segmentation (16) 

In Step 1, experienced surgeons performed segmentations of all CBCT 

datasets. These results were used to perform initial estimations of probabilities in 

order to create a base of probability maps for the mandible and the maxilla at each 

voxel (approximate localization). In Step 2, the features of context and appearance 

were extracted. It is important for the training of classifiers. For the extraction of the 

appearance and context features, the authors used Haar-like features. In Step 3, the 

training of random forest based classifiers was performed. In order to improve the 

segmentations, classifiers were trained for the complex relationship between the 

local appearance/context features and the corresponding manual segmentation labels 

on all the voxels of the training atlases. In Step 4, Steps 2 and 3 are repeated until 

overlap has been reached. In this step, the training of classifiers is important and 

consistent. The authors achieved accurate results of segmentation (Table 2.2).  
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Table 2.2. Calculated metrics by using the proposed methods (16) 

Metrics Region of interest Wang et al., 2016 (16) 

DSC 
Mandible 0.94 ± 0.02 

Maxilla 0.91 ± 0.03 

MSD, mm Mandible 0.42 ± 0.15 

HD, mm Mandible 0.74 ± 0.25 

This proposed method also suffers from some limitations: the limited amount of 

CBCT data and the noticeable computational time of segmentation (20 min).  

Fully automatic segmentation was presented by Fan et al., 2019 (19). The idea 

is to apply the marker-based watershed transform as the base for the region growing 

method. The proposed method was applied for mandible segmentation from the 

CBCT dataset (Fig. 2.8).  

 

Fig. 2.8. Flowchart of the automatic segmentation method by using marker-based watershed 

transform (19) 

The idea of the proposed method was to divide anatomical regions into the 

bone area (mandible) and the background (soft tissue and air). First of all, the 

original matrix of the image was transformed into a matrix of gradient by using the 

Derivative of Gaussian kernel. Transformation changed the intensity values of the 

original voxels. The boundaries of anatomical regions became more highlighted. 

Two markers were used to perform the segmentation. One marker was placed inside 
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the mandible, whereas the other was placed outside of the mandible.  The watershed 

transform floods the gradient image by dilating the markers simultaneously until 

colliding at the watershed lines, thus estimating the mandible boundary. The authors 

used 20 CBCT datasets in order to evaluate the accuracy of the proposed method. 

DSC was used for the evaluation of segmentation. The mean DSC was 0.97 ± 0.01. 

The calculated metric showed high accuracy of segmentation. However, some errors 

of segmentation were around the wisdom teeth, condyles, and the dental enamel. 

The reasons of segmentation errors were due to the different (bigger or the same) 

intensity values of the selected markers (the mandible and the background). The 

accuracy of segmentation of the proposed method depends on the quality of the 

CBCT dataset in use. It is sensitive to metal artefacts which are very common for 

patients with orthodontic or craniomaxillofacial anomalies. Manual post-processing 

editing is recommended.  

2.4 Segmentation by the edge 

For mandible segmentation, Gollmer et al., 2012 (18) proposed to use an SSM. 

SSM is used to analyze the morphometry of an object. It describes the shape/edge of 

the object by applying principal component analysis (PCA). SSM is based on a set 

of landmark points capturing the shape of the object in every image. Thirty cases 

were used in this study. All the cases were segmented semi-automatically from CT 

datasets and used for building SSM. The authors tested the proposed method by 

using six CBCT datasets. They used three approaches to implement SSM: distortion-

minimization (distmin), the detcov cost function, and the spharm method. The 

accuracy of segmentation was evaluated by the following four metrics: the average 

symmetric surface distance (ASD), the root mean square symmetric surface distance 

(RMSD), the maximum symmetric surface distance (MSSD), and the volumetric 

overlap error (VOE). The results are presented in Table 2.3. 

Table 2.3. Calculated metrics by using different SMMs (18) 

Approach ASD, mm RMSD, mm MSSD, mm VOE, % 

distmin 0.9 ± 0.2 1.4 ± 0.3 9.6 ± 2.5 24.3 ± 0.2 

spharm 0.9 ± 0.1 1.4 ± 0.2 10.9 ± 3.7 23.3 ± 0.2 

detcov 0.8 ± 0.1 1.2 ± 0.2 10.0 ± 3.2 20.9 ± 3.9 

 The calculated metrics showed very similar results when using different 

methods of SMM. Better results are recorded when using the detcov cost function 

evaluating the differences by surface. However, the amount of the training cases is 

too low in order to get high efficiency of the proposed method and to apply it in 

clinical practice. SMM is a progressive method in medicine to perform the 

segmentation of a selected anatomical region; however, the implementation of this 

method requires sizable training data.  

 Wallner et al., 2019  (169) made profound systematic evaluation by using six 

methods of segmentation: GrowCut (the implementation of this method is based on 

region growing), Robust Statistics Segmenter (the implementation of this method is 

based on the extraction of the analyzing edge of a selected anatomical area), Region 
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Growing 3D, Otsu & Picking (based on the thresholding of the analyzed anatomical 

area), Canny Segmentation (based on edge detection by the implementation of the 

Canny edge detector), and Geodesic Segmenter (based on the level set speed 

function). Three of them were based on edge extraction, whereas two were based on 

region growing, and one was based on global thresholding. The anatomical region 

was the mandible. Ten CT datasets were used in this study. For the implementation 

of segmentations, open-source software (Slicer, MITK and MeVisLab) was used. 

The basic metric to evaluate the accuracy of the different methods was: DSC, HD 

and Pearson’s correlation coefficient (r). Comparisons were made between the 

segmentation algorithms and the ground truth segmentations of the same anatomy 

performed by two clinical experts. In summary, the segmentation accuracy was 

highest when using the GrowCut (DSC 85.6%; HD 33.5 voxel) algorithm and the 

Canny (DSC 82.1%; HD 8.5 voxel) algorithm.  

2.5 Surface reconstruction 

Accurate surface reconstruction from a segmented discrete voxel dataset is a 

difficult but fundamentally important task (108). The final evaluation of a 3D model 

after surface reconstruction can be performed.  

There are a number of different methods of surface reconstruction. The most 

popular method is the marching cubes which was presented by Lorensen and Cline, 

1987 (109). This method processes segmented data (a dataset of voxels) in order to 

calculate triangle vertices by using linear interpolation. The main idea of the 

presented method is to divide the processed dataset (segmented voxels) into a 

discrete set of cubes. In each cube, the surface intersection is found. The values of 

each vertex cubes are compared to a given isovalue. The vertices of a cube with 

values below the surface receive zero and are outside the surface. The surface 

intersects those cube edges where one vertex is outside the surface (one) and the 

other is inside the surface (zero). There are 15 main combinations to create a 

triangulated surface (Fig. 2.9). 
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Fig. 2.9. 15 unique combinations of polygons by using marching cubes (109) 

 The zero (Fig. 2.9; 0) combination is the simplest of all; the vertex values of 

the cube are above the selected value, and no triangles are produced.  

 Different improvements of marching cubes method are performed in order to 

achieve more accurate results (110 – 112).  

 Dutailly et al., 2009 applied the Half Maximum Height (HMH) algorithm for 

surface reconstruction (108). The authors reconstructed the surfaces of a segmented 

mandible, the lower part of a face, and soft tissue. The results were compared with 

the results by the marching cubes method (Fig. 2.10). 
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Fig. 2.10. Results of marching cubes reconstruction (left) and HMH reconstruction (108) 

The visual results by using the HMH method were better than when applying 

the marching cubes method. The mandibular condyle width on the left and on the 

right side, the symphysis height between the two decidual central incisors, the height 

of the body of the mandible between the two decidual molars on the left and on the 

right side of the jaw were used as the measurements in order to evaluate the 

accuracy of the comparable methods. The measurements taken with a caliper with 

measurements computed on the surfaces extracted both by the original Marching 

Cube algorithm and by the HMH method were performed. The mean of the absolute 

error was 0.37 mm for HMH, and 0.57 mm for the marching cubes method (108). 

Curless and Levoy, 1996, presented a method for surface reconstruction (113). 

The implementation of the presented method consists of the cumulative weighted 

signed distance function. The processed dataset is converted to distance functions. 

The space efficiency was achieved by the run-length encoding of the volume. The 

final surface reconstruction was made by adapting the Marching cubes method. The 

surface was reconstructed by extracting an isosurface from a volumetric grid. The 

presented method was used to reconstruct the surface during optical scanning. 
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However, improvement of the presented method is implemented in Meshlab 

software (114) and can be used in order to reconstruct the surface of segmented 

voxels from CT, CBCT, MRI datasets. 

2.6 CBCT imaging technology 

CBTC is one of radiographic tools (115). Historically, the first applications of 

CBCT were intended for angiograms. Today, CBCT is widely used in the practice of 

dental and maxillofacial radiology. There are two main factors that have played a 

large role in the rapid adoption of CBCT in dentistry. The first of them is that it is a 

low-cost and rapid technology compared with the conventional CT. The second 

aspect is the ability of software engineers to develop multiple dental imaging 

applications for CBCT with broad diagnostic capability (116, 117). CBCT provides 

sub-millimeter resolution images of high diagnostic quality coupled with a short 

scanning time and a reduced radiation dose up to 10–15 times lower than the 

conventional CT (118).  

2.6.1 Imaging geometry of CBCT 

The hardware and software of the contemporary CBCT scanners are greatly 

improved comparing to the first prototype (117). 

 

Fig. 2.11. The image acquisition structure of the CBCT system (Scanora 3D) (119) 

The position of the tube in CBCT is in the direction that the axis of the anode 

to the cathode lies orthogonally to the longitudinal field of view (FOV). The flat 

panel detector is with a 608 × 616 array of 200 × 200 µm2 pixels. The tube is rotated 

upwards about the anode to the cathode axis by a small angle. There are two filters 
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which are placed in the beam path, each made of a 0.1 mm flat copper sheet. The 

source-detector movement follows the step-and-shoot (pulsed) pattern, with the half 

projections distributed evenly over 360° (119). Also, a lot of clinical CBCT devices 

use circular gantry rotation with the minimum angular coverage of 180°+ cone angle 

(120). In CBCT systems, the X-ray beam forms conical geometry between the 

source and the detector. In the conventional CT, the collimator restricts the X-ray 

beam to approximately 2D geometry (fan). In the fan-beam single-detector arc 

geometry, data acquisition requires both rotation and z-direction translation of the 

gantry to eventually construct an image set composed of multiple axial sections (Fig. 

2.12) (121). 

 

Fig. 2.12. CT acquisition geometries. A – geometry of cone beam CT, B – geometry of 

conventional CT (fan beam) (121) 

 The field of view of commercially available flat panel CBCTs ranges from 8 

cm × 5 cm to 23 × 17 cm. It depends on what volume is needed to investigate (e.g., 

the mandible, the maxilla, or the mandible with the maxilla). Nine different FOVs, 

which can be selected during the scanning are presented in Figure 2.13 (122). 

 

Fig. 2.13. Different sizes of FOVs applicable in i-CAT FLX V17 CBCT (122) 

 If the larger FOV is enabled, then, a greater extent of the patient is captured in 

the image; however, larger FOVs increase the scatter of X-rays. First of all, it affects 
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the loss of contrast and increases scatter artefacts (cupping, streaks, truncation) 

(120). 

 

2.6.2 CBCT X-ray detector technologies 

X-ray detectors of CBCT devices are mostly used with flat panel imagers 

(FPIs) that are made with the amorphous silicon (A-Si) thin film transistor (TFT) 

technology. FPIs consist of a large area of A-Si semiconductors. This technology 

has been included into large area active matrix flat panel imagers (AMFPIs). There 

are two principles used in AMFPIs: direct and indirect conversion (120). 

Direct conversion detectors 

The most commonly used option in all commercial CBCT devices is AMFPIs 

with direct X-ray conversion. X-ray conversion gain depends on the electric field. 

The nominal value for energy to generate an electron hole pair is 50 eV. Direct 

conversion detectors have the ability to make smaller pixels due to its simpler 

structure. The geometric fill factor of direct AMFPIs is higher {1} than the indirect 

detector {0.7}. The direct detector uses an X-ray photoconductor to convert X-rays 

directly to the charge (Fig. 2.14, a) (120). 

 

Indirect conversion detectors 

Indirect AMFPIs have been used less frequently than direct conversion 

detectors. The fill factor depends on the pixel pitch and the design of the TFT array. 

The indirect method is denoted by a higher X-ray quantum efficiency than direct 

conversion detectors. The indirect detector uses a phosphor screen or a structured 

scintillator to convert X-rays to optical photons which are then converted to charge 

by an integrated photodiode at each pixel (Fig. 2.14, b) (120). 

 

Fig. 2.14. Structure of AMFPIs using direct (a) and indirect (b) X-ray conversion (120) 

The detector size ranges from 22 cm × 22 cm up to 43 cm × 43 cm. Detector 

binning has also been implemented to enable rapid image acquisition in CBCT 

(120).  

(a-Se) 
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2.7 Quality metrics of CBCT images 

There are several international standards – the International Electrotechnical 

Commission (IEC) and the American Association of Physicists in Medicine 

(AAPM) Task Group that have accepted image quality metrics: the modulation 

transfer function (MTF), the detective quantum efficiency (DQE) and the noise 

power spectrum (NPS) (120). 

 

2.7.1 Modulation transfer function (MTF) 

MTF is determined by the Fourier transform (FT) of the point spread function 

(PSF). MTF is measured in orthogonal directions by using FT of the line spread 

function (LSF) and is the method for the characterization of the spatial response of 

an imaging system. There are several techniques to obtain the LSF – the fine wire, 

narrow slits, and the edge phantoms (123). In CBCT devices, the shift-invariance 

condition is disturbed due to some reasons:  

 

1) digital detectors are undersampled;  

2) the projection of an image blur due to the finite focal spot size of the X-

ray tube varies with the position of the object plane;  

3) the focal spot blur can deteriorate by the focal spot motion during X-ray 

exposure of the CBCT scan. The MTF values are between 0 and 1. Also, 

MTF values are depicted graphically (Fig. 2.15). 

 

 

Fig. 2.15. MTF of commercial detectors (120) 

Figure 2.15 shows measured MTF with different detector pixel binning. 4 × 4 

pixel binning is often used in CBCT image acquisition in order to increase the 

readout speed. Higher MTF values in the low spatial frequency range are needed to 
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outline coarse details, while high MTF values in the high frequency range are 

necessary to portray fine details and sharp edges (120). 

2.7.2 Noise power spectrum (NPS) 

NPS describes the noise properties of an imaging system. NPS provides 

information on the noise components for different spatial frequencies. Image blur in 

an AMFPI detector could lead to the spatial correlation of noise, which results in a 

high frequency drop of NPS. NPS can be obtained as follows (120, 124): 

subvolumes
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 DFT(I) is the Discrete Fourier Transform of zero-mean images (I), fn is a 3D 

spatial frequency, dx, dy and dz are the dimensions of the reconstructed voxels, and 

Lx, Ly, and Lz are the dimensions of the sub-volumes used to estimate the NPS (120, 

124). 

2.7.3 Detective quantum efficiency (DQE) 

DQE is a metric for characterizing the overall efficiency of an X-ray imaging 

detector. It is defined as the ratio between the signal-to-noise ratio (SNR) squared at 

the output of the detector and that at the input, which is equal to the number of X-ray 

photons per unit area (q0) (120, 121): 
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 DQE describes the efficiency of the detector in using the incident X-rays, and 

its upper limit is the quantum efficiency of the detection material (120, 121). 

2.7.4 Main factors affecting image quality 

Acquisition technique factors, such as peak kilovoltage (kVp), 

milliamperesseconds (mAs), exert influence on the image quality of CBCT. 

 The conventional CT is associated with relatively high radiation dose levels. 

The radiation dose of CBCT is generally lower than for the conventional CT. By the 

as-low-as-reasonably-achievable (ALARA) principle, the image quality is required 

to be optimized at reasonably low radiation dose levels (125, 126). The reduction of 

the dose is very important in order to protect the patient from the unnecessary 

radiation exposure. By the performed meta-analysis (127), the effective dose levels 

may range from 5 µSv to 1073 µSv for CBCT. The selected level of the effective 

dose depends on what size of FOV is used during the scanning. In comparison of 

conventional CT, the levels of the effective dose could range from 812 µSv to 1892 

µSv in the area of the head. Also, a study showed higher spatial resolution of CBCT 

but lower contrast resolution than the conventional CT (128). One of the main 

applicable methods to reduce the dose of CBCT is the low tube current-exposure 
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time (mAs). The low current-exposure time results in a decreased signal-to-noise 

ratio in the projection images due to fewer incident photons interacting with the 

detectors (129). The influence of kVp on the image quality is also relevant. A higher 

kVp value increases the mean energy of the photons in an X-ray beam and the 

amount of photons. Due to this reason, the optimization of kVp and mAs is required. 

The changing of mAs or kVp or both is intricate and should be correctly balanced, 

thus ensuring an adequate image quality by using the lowest possible dose level. 

mAs and kVp should be determined by the ALARA principle (130, 131). 

2.8 Image reconstruction of CBCT 

The scanning geometry of CBCT is different from the conventional CT, and 

the application of the traditional filtered back projection (FBP) cannot be applicable. 

The filtered back projection algorithm by Feldkamp, Davis and Kress (FDK) for 3D 

volume reconstruction from cone beam projections is used as one of the most widely 

used approaches (132). The approach of the FDK algorithm is to apply one-

dimensional (1D) filtering on each row of the projection data while assuming that 

this is the direction parallel to the rotation plane. After that, the back projection is 

performed by tracing the coordinate of an image pixel back to the X-ray focal spot. 

The reconstruction is based on pre-weighted filtering and the final back projecting. 

The pre-weighting is obtained as the cosine of angle ξ between the cone beam ray 

and the central ray of the projection, which is calculated by (133): 

22 vsD

D

s 
 ,  (2.12) 

 where, D is the distance between the X-ray source and the rotation center, s 

and v are the coordinates of the flat detector (Fig. 2.16). Assuming that the gathered 

projection data on (s, v) for projection angle β is p(s, v, β), the projection data after 

pre-weighted filtering can be expressed as (133): 
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 where, h(s) is the ramp filter. The final reconstruction of the voxel is 

represented as (133): 
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Fig. 2.16. Geometric coordinates of a scanning track for cone beam CT (133) 

 The reconstruction accuracy of CBCT is limited by the maximal cone angle 

range, most often, CBCT is designed with a cone angle range within ±15 degrees. 

Also, due to the approximation nature of the FDK reconstruction, the reconstructed 

CBCT image pixel values are typically less reliable than the traditional Hounsfield 

Unit (HU) values from the conventional (fan beam) CT images (133).  

2.8.1 Hounsfield units 

The smallest element in the CBCT dataset is the voxel. Each voxel has a value 

in Hounsfield units (HUs). Hounsfield units are characterized as a linear 

transformation of X-ray attenuation coefficients of a material with the reference 

material – water. HUs are calculated by the following equation (134): 

water

watermaterial
materialHU



 
1000 ,  (2.15) 

where, µmaterial are the linear attenuation coefficients of the material, and µwater 

are the linear attenuation coefficients of the reference material. 

The values of HUs for conventional CT scanners are presented in Table 2.4. 

Table 2.4. Typical HU values in CT images (134) 

Material HU value Notes 

Air –1000 In vacuum as well for all practical 

effects 

Fat –100  

Water 0 Distilled, at standard temperature and 

pressure 

Muscle +40  

Blood +40  

Bone >400 Spans over a large range, to ~1200, and 

occasionally more 

Aluminum 2640 At 60 keV 
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 In Table 2.5, we present the values of µ for materials and tissues at photon 

energies used in medical radiology. 

Table 2.5. Values of µ (in cm-1) for materials with various photon energies (134) 

Material 40 keV 60 keV 80 keV 100 keV 

Fat 0.228 0.188 0.171 0.160 

Water 0.268 0.206 0.184 0.171 

Cortical bone 1.280 0.604 0.428 0.356 

Aluminum 1.535 0.750 0.545 0.460 

Titanium 10.050 3.480 1.840 1.235 

 

The presented µ values are from the National Institute of Standards and 

Technology (NIST) tables of X-ray mass attenuation coefficients. The HU values 

depend on the energy of X-ray photons. Figure 2.17 shows the dependency of HU 

values for aluminum on different X-ray energies (134). 

 

Fig. 2.17. HU values for aluminum with different energies of X-ray (134) 

 All the presented HU values are calculated from the values of linear 

attenuation reported in the NIST tables of X-ray mass attenuation coefficients. HU 

values of some actual materials in dentistry using different X-ray energies are 

presented in Figure 2.18 (134). 

 

Fig. 2.18. HU values for some tissues and materials at three different X-ray beam energies 

(40, 60 and 80 keV) (134) 
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 The HU value of water is always 0 HU, and the HU value of air is always –

1000 HU based on Equation (2.15). The biggest differences of HU values then 

compare the bone by using different X-ray beam energies (Fig. 2.18) (134). The 

materials that absorb more X-rays have a higher HU value. For example, the HU 

value of the bone is higher than the HU value of a soft tissue (fat, muscles, liver). 

HU values can be used to quantify the bone material density (BMD). The bone 

density measurements using CBCT in clinical applications would yield an accurate 

value. It requires high stability and reliability of grey values and consistent 

correlation between the grey value and the density.  

Misch, 1999 (135) performed a study and suggested a classification of the 

bone density by HU: D1 bone >1250 HU; D2 bone, 850–1250 HU; D3 bone, 350–

850 HU; D4 bone, 150–350 HU; D5 bone, <150 HU. D1 means a dense cortical 

bone which is found in the mandible. D2 is found in the cortex with the trabecular 

bone pattern, and this is the most common bone density in the mandible. D3 is found 

in a thin cortex and a fine trabecular bone pattern, and this is the most common bone 

density found in the maxilla. D4 is a fine trabecular bone found in the posterior 

maxilla. D5 is a very soft bone which is usually consistent with sinus graft 

augmentation.  

Later study performed by Norton et al., 2001 (136) divided the density of the 

bone into four main ranges by HU: Q1 – the anterior mandible >850 HU, Q2 – the 

posterior mandible/anterior maxilla, 500–850 HU, Q3 – the posterior maxilla, 1–500 

HU, Q4 – tuberosity region, 0 HU. 

Naitoh et al., 2004 (137) showed that the facial bones voxel values obtained 

from CBCT datasets are not absolute. The same group of authors, i.e., Naitoh et al., 

2009 (138) performed a study in order to evaluate the voxel intensity values in the 

facial bones by using CBCT datasets.  

Aranyarachkul et al., 2005 (139) evaluated densities in different areas of jaws 

(the mandible and the maxilla) by HU. The maximum value was found to be 1143 

HU, whereas the minimum value was 80 HU. The reviewed articles showed the 

ranges of facial bones by HU in CT/CBCT datasets. 

Liang et al., 2010 (140) performed a study to compare the geometric accuracy 

of 3D surface model reconstruction between five CBCT scanners and on the 

conventional CT scanner. The reference 3D model (a dry human mandible) was 

obtained with a high resolution optical scanner. The mean deviation was 0.137 mm 

for the conventional CT, the mean deviation for all CBCTs was 0.211 mm. The 

results showed higher segmentation accuracy of the conventional CT compared to 

CBCT. The main reason was the higher inherent contrast between the bone and the 

soft tissue in conventional CT images. 

Silva et al., 2012 performed a study which showed that the HU values were 

higher compared with the conventional CT, and also the contrast between the bone 

and the soft tissue was higher in the conventional CT images (Fig. 2.19) (141). 
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Fig. 2.19. Axial images of a scanned mandible with conventional CT (A) and CBCT (B) 

(141) 

The reviewed studies (135 – 141) showed that there is no absolute value by 

which one could define the density value by the HU of facial bones. Also, the 

contrast resolution is lower in comparison with the conventional CT. Due to this 

reason, the segmentation of facial bones depends on the quality of the CBCT dataset 

and the experience of the observer who performs the segmentation. Manual 

segmentation is a time consuming global thresholding method, with which, the 

result of the segmentation depends on the selected value or several values by HU 

and is not accurate. Therefore, an automatic and objective method is needed to 

perform fast and accurate segmentation of facial bones. 

2.9 Summary of the methods for facial bones segmentation 

Manual segmentation is the most accurate method currently used in practice. 

Habitually, in order to create a ground truth (reference) model for comparative 

assessment, manual slice-by-slice segmentation is applied. However, manual 

segmentation is usually tedious and time consuming. The result of 3D segmentation 

depends on the experience of the operator. 

Global thresholding is the most commonly used method in clinical practice. It 

is a fast method. The results of 3D segmentation depend on the quality of the 

dataset. Global thresholding is implemented by the same threshold value over the 

entire dataset. However, the density/quality of facial bones is different. For this 

reason, accurate 3D segmentation of all facial bones by the global thresholding 

method is difficult to implement.  

Segmentation by the edge requires that the specialist should have a 

parameterized model created by an experienced operator. The accuracy of 3D 

segmentation depends on the training set and on the quality of the dataset. 

Segmentation by edge is more applicable for 2D segmentation. Also, segmentation 

by edge is sensitive to noise in the image. 

3D segmentation by region growing allows accurate 3D segmentation to be 

performed. The main difference between the region growing and the global 

thresholding methods is the ability to perform segmentation more locally by using 

A B 
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the region growing method. This means that the segmentation result does not depend 

on a single value. However, the region growing method is sensitive to artefacts and 

noise. It works most accurately when there is a strong contrast between the region 

being extracted and the background. For this reason, the use of the region growing 

method for the facial bones segmentation in CBCT datasets is complicated, and it 

does not provide a way to obtain an accurate 3D segmentation result. 

2.10 Conclusions of the chapter 

1. The automatic methods for facial bones segmentation showed promising 

results and the possibility of applying them in clinical practice after certain 

improvements. The main disadvantages of the reviewed automatic 

segmentation methods are the long implementation of the segmentation, 

the methods were tested or trained with a limited amount of data (by using 

CNN), or there was limited variability of the CBCT datasets. More reliable 

methods are needed for clinical practice in order to perform accurate, 

objective, and automatic segmentation. 

2. The imaging technology of CBCT is important and useful in clinical 

practice, however, it has important limitations due to the drawbacks of the 

scanning technology. These limitations have influence on the quality of 

the images, and, consequently, on the quality of segmentation.  

3. The density of facial bones expressed by HU can be wide [0–1250 HU], 

and the boundary between the facial bones and the background are not 

clear. For these reasons, segmentation of facial bones becomes more 

complicated. 

 

 When summarizing the findings from literature, the objectives for the study 

are: 1) to investigate the distribution of voxels in the preoperative and postoperative 

CBCT datasets by HUs. It is very important to evaluate what are the main 

differences between the CBCT datasets obtained before (one week) and after (up to 

one week) the orthognathic surgery. According to the performed literature review, 2) 

to develop an automatic method for the segmentation of facial bones in a CBCT 

dataset which reduces the operator’s influence on the segmentation result. In 

addition, automatic segmentation could save the operator’s (surgeon, orthodontist, 

etc.) time in performing the virtual surgical plan and evaluating the condition of the 

facial bones. It is thus necessary 3) to determine the parameters of the developed 

method that control the quality of segmentation, and 4) to investigate and evaluate 

the efficiency of the proposed method for the segmentation of facial bones when 

using clinical CBCT datasets.  
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3 EXPERIMENTAL INVESTIGATION OF CBCT IMAGING 

LIMITATIONS AND DETERMINATION OF A REFERENCE 

SCANNING SYSTEM 

In relation to the previous studies discussed in Chapter 2, it has been 

determined that CBCT images are noisier than the traditional CT images. Also, the 

density of the facial bones by HU is within a fairly wide range. There is no clear 

threshold that can separate the bone area from the soft tissue. Only an experienced 

physician is able to analyze a CBCT dataset and select the appropriate threshold. 

This chapter presents the results of experimental investigation performed with the 

aim to determine the spatial resolution of a CBCT device (i-CAT FLX V17, Imaging 

Sciences International, USA) (142) used in the dental practice and in the further 

study. Also, the reference scanning system evaluation is presented. The result of the 

reference scanning system gives an opportunity to accurately evaluate 3D 

segmentation results. 

3.1 Evaluation of spatial resolution of CBCT device i-CAT FLX V17 

The spatial resolution of the system is defined as the ability to visualize and 

distinguish small objects. Low spatial resolution results in the blurred and enlarged 

edges of regions in images thus directly affecting the accuracy of the measurements. 

The spatial resolution of a CBCT system is determined by many factors, such as the 

detector element size, the focal spot size, the reconstructed voxel size, and a 

smoothing filter (143).  

Experimental in vitro investigation of CBCT device i-CAT FLX V17 used for 

scanning in the private clinic of Orthognathic Surgery of Simonas Grybauskas was 

performed. The experiments presented in this chapter were performed while 

maintaining acquisition parameters close to the default settings used in routine 

clinical CBCT scanning of the patient’s head before and after orthognathic surgery. 

The acquisition parameters of CBCT are presented in Table 3.1. 

 

Table 3.1. Acquisition parameters of CBCT 

Tube voltage (kV) 120 

Tube Current (mA) 5 

X-ray source to sensor distance (mm) 71.4 

Exposure time (s) 7 

Degrees of rotation (º) Single 360 degree rotation 

Detector array size 768 (rows) × 768 (columns) 

Cone angle (º) ±10 

Reconstructed matrix size 768 × 768 × 576 

Reconstructed volume size (mm) 230 × 230 × 173 

Reconstructed voxel size (mm) 0.3 × 0.3 × 0.3 

Reconstruction algorithm FDK 

 



50 

 

After CBCT scanning, reconstructed datasets were exported in the DICOM 

(digital imaging and communications in medicine) format. The obtained CBCT 

datasets consisted of 567 reconstructed images in the axial view, 768 reconstructed 

images in the coronal view, and 768 reconstructed images in the sagittal view.  

For the spatial resolution, a dry mandible from Lithuanian University of 

Health Sciences (LUHS), Institute of Anatomy was used. The experimental setup is 

presented in Figure 3.1. 

 

Fig. 3.1. Dry mandible and mandible immersed into a degassed distilled water tank 

prepared for scanning with CBCT 

 The investigation was performed in two stages. Firstly, only the dry mandible 

was scanned with CBCT, and, secondly, the dry mandible was immersed into a 

degassed distilled water tank and scanned with the same acquisition parameters of 

CBCT. The positioning of the mandible in each stage was the same: the mandible 

was centered and was facing straight forward. Figure 3.2 presents a few images 

obtained during the investigation.  

  

Fig. 3.2. Axials views of reconstructed CBCT images (A – mandible scanned without 

water, B – immersed into distilled water) 

 Distilled water was used to imitate the properties of a soft tissue. The spatial 

resolution was evaluated at full width at half maximum height (FWHM) of the line 

spread function (LSF). The calculation of LSF begins with the determination of the 

A B 
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region of interest (ROI). The ROI was determined at the same axial slice of both (A 

and B) obtained CBCT datasets. Accordingly, the B CBCT dataset was 

superimposed by the A CBCT dataset. The voxel-based technique was used for the 

implementation of superimposition (89). The position of the B CBCT dataset was 

changed by the A CBCT dataset. ROI was determined as the buccal shelf region of  

the mandible (Fig. 3.3). 

 

Fig. 3.3. A – coronal slice, B – axial slice of CBCT dataset with determined ROI (the buccal 

shelf region) 

 This anatomical region was selected for its anatomical features. The cortical 

bone thickness is the greatest (144), and the contrast between the soft tissue and the 

bone is the most obvious in CBCT images. The ROI was 16 × 16 pixels. Then, the 

pixels were averaged along the y-direction in order to obtain the edge spread 

function (ESF) profile of the pixel values. The averaged ESF curve is then 

differentiated so that to obtain the LSF curve. Next, the LSF curve was zeroed and 

normalized. The results are presented in Figure 3.4. 

 

 

Fig. 3.4. Processes for calculating FWHM. A – axial slice of CBCT dataset. B – determined 

ROI, C – projections used to calculate ESF, D – calculated ESF, E – calculated and 

normalized LSF 
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By the calculated FWHM, the spatial resolution was approximately 1.5 mm. It 

is a 3-times lower resolution in comparison with the theoretical resolution (0.3 mm) 

of the CBCT device in use in this research. The same procedure was performed in 

order to calculate the spatial resolution when the dry mandible was immersed into 

distilled water. The results are presented in Figure 3.5. 

 

 

Fig. 3.5. Processes for calculating FWHM. A – axial slice of CBCT dataset. B – determined 

ROI, C – projections used to calculate ESF, D – calculated ESF, E – calculated and 

normalized LSF 

The spatial resolution decreased by approximately 0.3 mm. Distilled water had 

an effect on the absorption of X-rays. Distilled water affected the spatial resolution. 

It corresponds to about one pixel. 

The investigated spatial resolution of the CBCT device (i-CAT FLX V17) is 

about 5–6 pixels in the selected ROI. However, the spatial resolution could be 

affected and reduced in in vivo researches. A larger number of anatomical regions 

(muscles, skin, fibers, saliva, etc.) are involved in real clinical situations. In addition, 

the bone density is not the same in different areas of the mandible. For these reasons, 

the edge between the bone and the soft tissue is not clear and sharp. This also affects 

the quality of 3D segmentation.  

3.2 Evaluation of the reference scanning system 

The same dry mandible was used to determine a reference scanning system. 

The reference scanning system is required to obtain a reference 3D model. By the 

reference 3D model, the results of segmentation can be evaluated more accurately.  



 53 

 

From this point of view, the use of a coordinate measuring machine (CMM) 

was chosen due to the possibility of accurate 3D measurement. In order to obtain a 

true linear measurement value when using CMM, 3 reference balls were attached to 

the mandible, and 3 linear measurements – AB, BC, and AC – between the balls 

were performed (Fig. 3.7). Mitutoyo Crysta Apex S (Mitutoyo America Corporation, 

USA) (145) was used in this research. The declared accuracy of CMM is defined as 

the maximum permissible error (MPE): (1.7+3L/1000) μm. 1.7 μm is the maximum 

permissible probing error. L is the selected measuring length (in mm). The flowchart 

of all the research is presented in Figure 3.6. 

 

Fig. 3.6. Flowchart of research in order to determine the most accurate scanning system 

Three reference balls were put on the top of the left and right condyles and at 

the center of mandibular incisors. This triangle is established as the Bonwill’s 

triangle (146) (Fig. 3.7).  
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Fig. 3.7. Prepared mandible with reference balls (diameter of spheres – 10 mm) for 

measurements 

 After CMM measurements, the mandible with reference balls was scanned 

optically – by using a handheld optical scanner Handy Scan 700 (Creaform, USA) 

(147). The declared accuracy of the scanner is 30 μm, the volumetric accuracy is 20 

μm + 60 μm/m. First of all, the portable optical scanner was calibrated according to 

the protocol of the selected manufacturer. Scanning was performed by one 

experienced user. The digital 3D model was saved in the stereolithography (STL) 

file format (Fig. 3.8). 

          

Fig. 3.8. 3D model obtained after optical scanning 

 The achieved result showed a high visual quality of the digital 3D model by 

using optical scanning. 

 The same anatomical model with the reference balls was scanned with a 

CBCT device (i-CAT FLX V17). The acquisition parameters of CBCT were the 

following: the size of an isotropic voxel – 0.3 mm, FOV was 230 mm × 170 mm, the 
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time of exposure was 7 s, the tube voltage was 120 kV with the tube current 5 mA. 

The selected acquisition parameters were used the same as in the usual scanning of 

the patient’s head before or after the orthognathic surgery. The anatomical model 

was segmented manually by one experienced surgeon. However, in the place of 

reference balls, metal artefacts (the red arrows) and geometrical distortions were 

obtained and were seen after the initial (the global segmentation method was 

applied) segmentation (Fig. 3.9). 

  

Fig. 3.9. Segmented anatomical model from different points of view (CBCT dataset) 

 The surface of the segmented anatomical model was evaluated slice by slice in 

the original CBCT images (Fig. 3.10). 

 

Fig. 3.10. Segmented anatomical model from different points of view (top), below – the 

surfaces of the segmented anatomical model and the reference balls in CBCT images 

(bottom) 

 Metal artefacts were removed manually by an experienced surgeon (Fig. 3.1). 

In order to increase the accuracy of measurements, three digital spheres were 

designed. The diameter of the digital spheres was set the same as the original 

spheres of the reference balls (the upper part) – 10 mm. Digital spheres were 

automatically superimposed by the surface-based method (148) by using Geomagic 

Control X (Version 2018.1.1, 3D Systems, USA) software (149). The results are 

presented in Figure 3.11. 
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Fig. 3.11. A – Processed anatomical model, B – digital spheres with a diameter of 10 mm, C 

– superimposed spheres by the processed anatomical model 

 The differences between the superimposed surfaces were calculated. The root 

mean square (RMS) of the intersurface distance was used to evaluate the 

reconstructed outer surface mismatch. 
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 where, ax,y,z represents the coordinates of the optically scanned model outer 

surface point, bx,y,z – the coordinates of the outer surface point created with the 

proposed method, n is the number of all the points measured in each analysis.

 The same workflow of research was performed with the optically scanned 

anatomical model and digitally created spheres. The calculated results are presented 

in Table 3.2. 

Table. 3.2. RMS values according to differences between surfaces of spheres 

Measuring body 
CBCT Optical scanner 

RMS, mm 

A 0.151 0.041 

B 0.114 0.043 

C 0.111 0.055 

10 mm 

A B 

C 
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 The larger intersurface distances after the superimposition were calculated 

between the outer surface of the segmented spheres (CBCT) and designed digitally. 

Compared to the results obtained with the optical scanner, the differences were 

about 2 times larger. The distances between the centers of the spheres were 

calculated. The results are presented in Table 3.3.  

Table. 3.3. Distances between the centers of the spheres 

Device 
Distances, mm 

AB BC AC 

CMM (reference) 88.278 107.012 110.867 

Optical scanner 88.397 107.046 110.890 

CBCT 88.438 106.896 110.923 

The achieved results showed that the 3D model obtained by optical scanning 

was more accurate than the 3D model segmented from the CBCT dataset. For this 

reason, an optical scanning system (Handy Scan 700, Creaform, USA) was used to 

obtain a reference 3D model.  

3.3 Acquisition of optical mandible surface scans 

Three mandibles (Fig. 3.12 A, B, C) from LUHS, the Institute of Anatomy 

were scanned with an optical scanner (Handy Scan 700, Creaform, USA).  

           

 

 

Fig. 3.12. Three mandibles (A, B, and C) prepared to scan optically 

A B 

C 
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 The obtained digital 3D models were saved in the STL (Standard 

Triangulation Language) file format (Fig. 3.13). 

 

  

   

Fig. 3.13. Optically scanned mandibles from different points of view 

 All the scans were performed by one user on the same day. 

3.4 Conclusions of the chapter 

1. The investigated spatial resolution of the CBCT device (i-CAT FLX V17) 

is 5–6 pixels (1.5–1.8 mm) in the selected ROI (the right buccal shelf 

region). The obtained results showed that the 3D segmentation of a bone 

can be complicated. Accordingly, a more accurate scanning system is 

required to obtain a reference 3D model. 

2. Measurements with CMM were used to determine the reference scanning 

system. The performed experiments showed that the outer surface of the 

3D model obtained with the optical scanner was more accurate than the 

outer surface of the 3D model obtained by global segmentation performed 

in the CBCT dataset. The results of the optical scanner were twice as 

accurate (the mean distance error – 0.059 mm) in comparison with the 

results obtained with the CBCT device (the mean distance error – 0.111 

mm). The results of the linear measurements also confirmed that the 

optical scanning system was more accurate than the CBCT. For this 

reason, optically scanned mandibles were used as reference 3D models in 

the further study. 

3. Two sets of data were created during the experiments. The first set was 

collected as a reference. Three dry mandibles were scanned with an optical 

scanner. The second set was collected after scanning mandibles immersed 

into distilled water with the CBCT device. The acquisition parameters of 

the CBCT were the same as those used in the practice of orthognathic 

surgery. 

C A B 
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4 PROPOSED METHOD FOR FACIAL BONES SEGMENTATION 

4.1 Concept of automatic segmentation of facial bones  

In this chapter, a solution of automatic segmentation of facial bones from the 

CBCT dataset is introduced. Based on the results of the performed literature review 

and the performed experimental investigation of the CBCT imaging system, the idea 

of automatic segmentation using locally found optimal thresholds of Otsu’s method 

is proposed. Three main elements were used to perform automatic segmentation of 

facial bones: the histogram filter, Otsu’s method, and the 3D sliding window. 

Irrelevant anatomical regions were removed from the processed CBCT dataset 

by the histogram filter. The task of the filter was to limit the amount of the relevant 

voxels in the histogram (while leaving the voxels of the soft tissue and the facial 

bone). The 3D sliding window was used to find optimal thresholds by using Otsu’s 

method in the defined volume of the processed CBCT dataset. The structure of the 

new automatic method for facial bones segmentation is presented in Figure 4.1. 

 

Fig. 4.1. Implementation of segmentation by using the proposed automatic method (150) 

4.1.1 Analysis of CBCT histogram 

Experimental data. Three mandibles were scanned with a CBCT device (i-

CAT FLX V17). CBCT datasets were acquired with a resolution of an isotropic 

voxel of 0.3 mm, 230 mm × 170 mm FOV, the time of exposure was 7 s, the tube 

voltage was 120 kV, and the tube current was 5 mA. Mandibles were immersed into 

a clear plastic container filled with degassed distilled water. Distilled water was used 
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in order to simulate the properties of a soft tissue as in the previous research (Fig. 

4.2). 

     

Fig. 4.2. Experimental setup for scanning with i-CAT FLX V17. The mandible is centered 

and facing straight forward 

The size of the reconstructed CBCT dataset (I) which was obtained by using 

the selected parameters was I = [768(x) × 768(y) × 576(z)] voxels (Fig. 4.3).  

 

Fig. 4.3. Reconstructed CBCT dataset with the scanned mandible placed in a plastic 

container and filled with distilled water 

The size of the reconstructed CBCT dataset depends on the selected FOV 

during the scanning. The used FOV was chosen in order to use the same FOV which 

is used during the scanning of the patient’s head before or after the orthognathic 

surgery. The two other mandibles were scanned with the same CBCT acquisition 

parameters. Three CBCT datasets were obtained. The first task was to analyze 

CBCT histograms and to identify the main areas that make up the HU histogram of 

the CBCT dataset.  

x y 

z 
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Results. The histograms HU distribution in the collected CBCT datasets are 

presented in Figure 4.4. 

  

Fig. 4.4. HU distribution of CBCT histograms 

 The distribution of the voxels according to HU is similar when comparing 

different CBCT datasets. Three best expressed areas can be seen in the presented 

histograms. The fourth area (the bone) can be seen when it is zoomed in. 

Accordingly, the properties of the histogram filter were set. The lower threshold that 

eliminates the irrelevant anatomical areas (Fig. 4.4 1 and 2) is determined by Otsu’s 

method, and the upper threshold value was chosen as the maximum value in the 

CBCT dataset on the grounds of the fact that the mandibles do not have metal 

implants and restorative materials. The 3rd and 4th areas (Fig. 4.4) were used to find 

the optimal threshold values. 

 

4.1.2 Implementation of 3D sliding window for segmentation 

 The second task was to evaluate the influence of a 3D sliding window for the 

results of bone segmentation. A 3D sliding window (V(x, y, z)) is used to make the 

segmentation a local. The optimal threshold values by Otsu’s method were found 

after the filtration of the histogram in a 3D sliding window. The optimal threshold 

values were found after each shift (px, y, z) of the 3D window. The determined optimal 

threshold values were saved into the matrix of local thresholds L(x, y, z). The filled 

matrix L(x, y, z) is used to perform the final segmentation. The determined optimal 

thresholds L1+i were compared with the original matrix I(x, y, z) voxels values, and 

final segmentation is performed by applying: 



 


otherwise

zyxLzyxIif
zyxS

1
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 The 3D sliding window should increase the accuracy of segmentation. The 

segmentation thus becomes local (Fig. 4.5). 
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Fig. 4.5. Analysis of histogram 2 in the determined volume of sliding window 1 in order to 

find optimal threshold value L and perform the segmentation of facial bones 3 (150) 

 The amount of the determined optimal thresholds depends on the size of the 

volume and the number of shifts of the 3D sliding window. It is an important step to 

evaluate the influence of the 3D window on the segmentation results. The shift and 

the volume of the 3D sliding window were evaluated. The implementation of the 3D 

sliding window is presented in Figure 4.6. 

       

 

 

 

 

Fig. 4.6. Implementation of 3D sliding window (V(x, y, z)) 

L(x, y, z) 
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 The size of the reconstructed CBCT dataset (I) is not isotropic; however, by 

the maximum dimensions (dmax = 768 voxels) of CBCT dataset I, four different 

volumes (V1, V2, V3, and V4) were used in this research. The sizes of the volumes 

were isotropic (Fig. 4.7). 

 

 Fig. 4.7. Representation of the selected volumes of 3D window 

The selected isotropic volumes of a 3D window in the research were as follows: 

 V1 = [96 × 96 × 96] voxel = 24 cm³ (13% of dmax);  

 V2 = [192 × 192 ×192] voxel = 191 cm³ (25% of dmax);  

 V3 = [288 × 288 × 288] voxel = 645 cm³ (38% of dmax);  

 V4 = [384 × 384 × 384] voxel = 1529 cm³ (50% of dmax).  

The shifts (px, py, pz) were selected according to the size of the volume (Table 

4.1). 

Table 4.1. The selected shifts (in voxels and mm) to find the optimal shift of 

volume. *Values by millimeters (mm) were rounded to the nearest integer 

 Shifts (p) 

Volumes 10% of V 30% of V 50% of V 100% of V 

 voxels mm voxels mm voxels mm voxels mm 

V1 10 3 29 8 48 14 96 29 

V2 19 6 58 17 96 29 192 58 

V3 29 9 86 26 144 43 288 86 

V4 38 12 115 35 192 58 384 115 

Each volume is moved from the beginning of the original matrix I of the 

CBCT dataset. The volumes move in the x, y and z directions. After each 

segmentation, the 3D surface reconstruction of the segmented voxels was 

performed. The surface reconstruction is performed by the volumetric reconstruction 

algorithm (the Visualization and Computer Graphics (VCG) reconstruction filter) by 

I 

768 voxels 768 voxels 

576 voxels 

V1 

V2 

V3 

V4 



64 

 

using the MeshLab free software (Visual Computing Lab of ISTI–CNR, University of 

Pisa) (151, 152). The basis of the VCG reconstruction filter is the marching cubes 

algorithm. The basic parameter for the reconstruction of the 3D surface is the Voxel 

Side. According to the original voxel size (0.3 mm), the Voxel Side was chosen equal 

to the original voxel size. A larger value of the Voxel Side may cause a 3D surface 

that is too smooth, whereas a smaller value of the Voxel Side than the original voxel 

size may cause a sharp, grainy 3D surface in the output (Fig. 4.8). The reconstructed 

3D surfaces were saved in the STL file format. 

        

 

Fig. 4.8. Reconstructed surface of the mandible with different values of Voxel Side (A – 

Voxel Side 0.15 mm, B – Voxel Side 0.3 mm, C – Voxel Side 0.6 mm)  

4.1.3 Evaluation of 3D deviation between automatically segmented and optically 

scanned (reference) outer surfaces 

The third task was to superimpose segmented 3D models with the 

corresponding optically scanned 3D models. The surface-based method (148) was 

used for superimposition. Superimposition was implemented in the Geomagic 

Control X (Version 2018.1.1) software. After superimposition, the outer surface 

distances of the 3D models were calculated by RMS. The RMS value showed how 

two 3D outer surfaces deviated from zero. A low RMS value indicated high 3D 

A B 
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agreement between the two 3D model outer surfaces. The unit of measurement 

considered for RMS was mm. 

Also, the time to perform automatic segmentation after each iteration of 

segmentation was calculated. The results are presented in Table 4.2. 

Table 4.2. Calculated RMS values and segmentation times to evaluate the influence 

of the 3D sliding window on segmentation results 

M
o
d
el

s 

V, cm³ 

Shifts, mm 

100% V 50% V 30% V 10% V 

RMS, 

mm 

Time, 

s 

RMS, 

mm 

Time, 

s 

RMS, 

mm 

Time, 

s 

RMS, 

mm 

Time, 

s 

A 

24 0.406 9.92 0.338 30.42 0.340 101.88 0.337 1856 

191 0.479 14.54 0.403 33.04 0.368 111.31 0.366 2451 

645 0.501 18.11 0.408 43.57 0.389 118.14 0.377 2541 

1529 ↑0.502 21.53 0.484 43.06 0.406 133.15 0.398 ↑2813 

B 

24 0.469 9.53 0.349 23.85 0.359 91.03 0.359 1642 

191 0.413 14.17 0.454 28.38 0.431 99.68 0.426 2063 

645 0.406 15.94 0.427 32.32 0.458 101.89 0.434 2102 

1529 0.451 20.31 0.388 41.15 0.389 138.05 0.452 2165 

C 

24 0.3929 ↓8.80 0.303 27.12 0.288 90.65 ↓0.286 1762 

191 0.4021 11.77 0.312 29.85 0.304 109.31 0.304 2389 

645 0.4565 17.89 0.341 41.47 0.311 112.39 0.307 2444 

1529 0.3345 20.51 0.340 42.10 0.319 129.17 0.309 2455 

The calculated metrics showed that the minimum values of RMS are found 

when the volume and shift of the 3D window is minimum; however, the 

computational time to perform segmentation is the longest. The biggest 

discrepancies between the 3D surfaces are observed when the volume and shift of 

the 3D window is the maximum. Despite this, the shortest computational time to 

perform segmentation is detected when the volume of the 3D window is the 

minimum, and the shift of the 3D window is the maximum. The mean RMS values 

of each shift and volume of the 3D window are presented in Figure 4.9. 

 

Fig. 4.9. The calculated mean values of RMS by different volumes and shifts of 3D window  

The mean computing time to perform segmentations by using different 

volumes and shifts of a 3D window are presented in Figure 4.10. The logarithmic 
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scale was applied in the Time axis due to a wide range of the calculated values of 

time. 

 

 

 

 

 

 

 

 

 

Fig. 4.10. The calculated mean computational times by using different volumes (V) and 

shifts (px, y, z) of 3D window. A – original dependency, B – the same dependency with the 

logarithmic scale 

Discussion. The larger differences in the computational time are observed 

when the shift of the 3D window is the smallest (10% of V). There is approximately 

a 100-times difference when comparing the computational time when the shifts are 

100% of V with the shifts equaling 10% of V. The evaluation of the calculated RMS 

values and the computational time has shown that the optimal volume is 191 cm3, 

whereas the shift is 50% of the 3D window (which is 29 mm). This decision was 

made by the comparison of the different calculated mean values of RMS by using 

different volumes and shifts of the 3D window. The differences in comparing the 

mean values of RMS when using different volumes and shifts were not significant, 

but the differences in the segmentation time when using different volumes and shifts 

A 

B 



 67 

 

were significant. For these reasons, in the further study, the volume of choice was 

191 cm3, whereas the shift of 29 mm was used. 

4.2 Limitations due to the reference models in use 

 Accurate evaluation of segmentation can be performed by using a cadaver with 

the soft tissue (100, 153). Dry mandibles without the soft tissue do not provide ideal 

conditions for evaluating the proposed method. According to the performed previous 

investigation, distilled water had an effect on the quality of the spatial resolution. In 

this research, distilled water was also used to simulate the soft tissue. In order to 

evaluate the proposed automatic method for bone segmentation, only the outer 

surface distances of the 3D models were calculated. The volumetric differences 

could be evaluated by using the more accurate scanning technology – micro-CT. 

 The limitation of this performed research is also the limited amount and 

variety of the research objects. For this reason, the optimal parameters of the 3D 

sliding window may vary depending on the size and bone density of the mandible. 

4.3 Conclusions of the chapter 

1. The analysis performed on CBCT histograms showed that the voxel 

distribution of the facial bones was not evident. Manual separation (by 

global thresholding) of the bone region from the simulated soft tissue 

region is complicated. 

2. An automatic method for facial bones segmentation in the CBCT dataset 

was developed. The implementation of the method is based on the analysis 

of the CBCT histogram, the filtering of the irrelevant anatomical regions 

from the CBCT histogram, on the determination of the volume and shift of 

the 3D window, and on the application of Otsu’s method serving the 

objective of finding the optimal threshold. 

3. Experimental investigation was performed in order to evaluate the 

influence of the 3D sliding window on the segmentation results. Two basic 

parameters of the 3D window were evaluated: the volume and the shift. 

4. The best repeatability of the outer surfaces of the two 3D models is 

achieved when the volume of the 3D window is 191 cm3, and the shift of 

the 3D window is 29 mm. This selection is based on the aggregate 

estimation of the segmentation time and 3D deviation by calculating RMS 

between the automatically segmented and the optically scanned (reference) 

outer surfaces. 
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5 PERFORMANCE EVALUATION OF THE DEVELOPED METHOD 

5.1 Experimental results of the analysis of CBCT histogram 

 Experimental data. Twenty CBCT datasets were randomly selected from 

Simonas Grybauskas’ Orthognathic Surgery database. Ten CBCT data sets were 

obtained approximately one week before the surgery (preoperative), and ten – 

approximately one week after the surgery (postoperative). All the CBCT data sets 

were anonymized. CBCT datasets were acquired with a CBCT device i-CAT FLX 

17 (Imaging Sciences International, USA), the FOV was 230 × 170 mm, the time of 

exposure was 7 s, the tube voltage was 120 kV with the tube current of 5 mA. 

Results. The analysis of the CBCT histogram was performed so that to 

identify the main areas that make up the HU histogram of the CBCT dataset. In 

order to analyze the full structure of the histogram, ten randomly selected 

preoperative and ten postoperative CBCT datasets were used (Fig. 5.1).  

 

Fig. 5.1. Histograms of HU distribution in the dataset. The red color represents histograms of 

preoperative CBCT datasets (N=20), the blue color represents histograms of postoperative 

CBCT datasets (N=20).  

Three most expressed areas found in histograms are: air, internal anatomical 

structures containing air, and the soft tissue. The bone area was not expressed well 

in all histograms. The clearly visible area (excluding air) was the soft tissue in 
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preoperative and postoperative histograms. Also, the biggest difference between 

these areas was seen when comparing preoperative and postoperative CBCT 

datasets. The statistical difference between the voxel values of the whole HU scope 

for preoperative and postoperative CBCT was not found (paired ttest was used, p > 

0.05). Then, by comparing the distribution of HU values only in the soft tissue, the 

statistical difference between the preoperative and the postoperative cases was found 

(paired ttest was used, p < 0.05). The amount of voxels was bigger for the 

postoperative cases in comparison with the amount of voxels in the area of the soft 

tissue for the preoperative cases. It was determined that the soft tissue was more 

swollen after the surgery. The mean shape, structure and relation to the anatomic 

areas of the summarized investigated histogram is presented in Figure 5.2.  

 

Fig. 5.2. The mean histogram of investigated CBCT datasets (150) 

 Discussion. When evaluating the reviewed studies (135 – 141) along with the 

presently performed study, the full structure of a histogram can be divided into the 

following basic areas: air (Fig. 5.2. – area 1), the internal anatomical structures 

containing air (Fig. 5.2. – area 2), soft tissue/tuberosity areas (Fig. 5.2. – area 3), 

facial bones (including the cortical bone, the trabecular bone of the mandible and the 

maxilla) (Fig. 5.2. – area 4), and metal artefacts and restorative materials (Fig. 5.2. – 

area 5). However, the distribution of the facial bones voxels and metal artefacts 

voxels are not Gaussian on a histogram. Only the second and third areas form 

Gaussian distribution. 
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 In this research, the region of interest is the area of facial bones. By the 

performed literature review (135 – 141), the voxels intensities distribution of the 

facial bones in CBCT datasets is relatively wide [0–1250 HU]. In each CBCT 

dataset, the threshold value can be different. It depends on whatever kind of the 

CBCT device was used, what is the quality of the bone, etc. For these reasons, the 

boundary between the soft tissue and the facial bones is not clearly defined. The 

position of the dashed line in Figure 5.3 can be different in each individual case. 

Also, an automatic method (Otsu) cannot work accurately when seeking to find the 

optimal threshold value. However, Otsu’s method can be applied to find two optimal 

thresholds. The first threshold separates the soft tissue from the internal anatomical 

structures containing air. The second threshold separates the internal anatomical 

structures containing air.  

5.2 Filtration of CBCT histogram 

 According to the previously presented idea, Otsu’s method was used to find 

two optimal thresholds. The determined thresholds were used for the filtration of the 

irrelevant anatomical areas from the CBCT histogram. The third threshold was 

selected based on the findings of the performed literature review. The value of the 

third threshold was selected to be 1250 HU as justified by the study performed by 

Misch (135). 

The purpose of the filter is to make the analyzed CBCT histogram bimodal. 

The filtered histogram is presented in Figure 5.3. 

 

Fig. 5.3. Filtered histogram (the areas selected by the green color were filtered). The one 

good expressed area (3) is seen after filtration 
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 However, the finding of optimal threshold value after filtration is still 

complicated. Just one good expressed area (the soft tissue) in the histogram is seen. 

The overlap of the voxels intensity between the facial bones and the soft tissue is 

possible. Due to this reason, the reduction of the analyzed volume was used in order 

to find the optimal threshold value only in the determined volume. In order to 

segment all the object, the 3D sliding window was used for the implementation of 

this idea. 

5.3 Experimental results of facial bones segmentation  

Experimental data. A retrospective study was performed by using forty 

CBCT datasets from the database of the Orthognathic Surgery clinic of Simonas 

Grybauskas. Before the study, all the CBCT datasets were anonymized in order to 

protect the patients’ data. Half of them (n = 20) were preoperative (obtained one 

week before the surgery), whereas the other half (n = 20) were postoperative 

(obtained about one week after the surgery) scans of the same patient group. All the 

scans were done by using the i-CAT FLX V17 (Imaging Sciences International, 

USA) scanner. All the patients undertook double jaws correction. CBCT datasets 

were acquired with the resolution of an isotropic voxel of 0.3 mm, 230 mm × 170 

mm field of view (FOV), the time of exposure was 7 s, the tube voltage was 120 kV, 

and the tube current was 5 mA. The study framework is presented in Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. The framework of the current study. The study was performed by using 

preoperative and postoperative CBCT datasets. Five metrics RMS, HD, MSD, DSC, and 

computational Time were used to evaluate the efficiency of the proposed method 

 Performance evaluation. Preoperative and postoperative CBCT datasets were 

segmented by an experienced oral and maxillofacial surgeon using ITK-SNAP 

software (Version 3.4.0) (154) by selecting the global threshold value for each case 

individually. The mandible and the lower parts of the skull (including the maxilla, 

the zygomatic bone) were used to perform the segmentation. Therefore, the above 

mentioned anatomical regions were selected as the segmentation target while 
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assessing their importance with regard to the surgery. In order to evaluate the 

reliability of the surgeon’s segmentation, the segmentations were done twice within 

a two-week interval. For the quantitative evaluation of the reliability, the Intraclass 

Correlation Coefficient (ICC) was used with the two-way mixed model, unit: the 

single rater and the type of relationship: the absolute agreement method (155) was 

calculated by: 

)()1( ECER

ER

MSMS
n

k
MSKMS

MSMS
ICC




 ,  (5.1) 

 where, MSR = mean square for rows, k = number of raters/measurements; MSE 

= mean square for error; MSC = mean square for columns; n = number of subjects. 

ICC was calculated separately for the preoperative and postoperative cases, and the 

segmentation thresholds as selected by the surgeon were used for this step. The 

interpretation of ICC could be defined, and the values lower than 0.5 are indicative 

of poor reliability, the values between 0.5 and 0.75 indicate moderate reliability, the 

values between 0.75 and 0.9 indicate good reliability, and the values greater than 

0.90 indicate excellent reliability (155). The calculated values of ICC are provided 

in Table 5.1. 

Table 5.1. Results of Intraclass Correlation Coefficient (ICC) when using single 

rater, absolute agreement and 2-way random effects model 

                                 Intraclass 

Correlation 

95 % Confidence Interval    F Test with True Value 0 

Lower  

Bound 

Upper  

Bound 
Value df1 df2 Sig 

Single measures 

preoperative 
0.985 0.896 0.983 49.03 19 19 0.000 

Single measures 

postoperative 
0.931 0.836 0.972 27.43 19 19 0.000 

 The results show that, in the preoperative data, ICC = 0.958 with 95% 

confidence interval [0.896 ... 0.983], whereas, in the postoperative data, ICC = 0.931 

with 95% confidence interval [0.836 ... 0.972]. The calculated values of ICC show 

that the level of surgeon reliability is sufficient. 

Facial bones segmented by the surgeon were used as reference 3D models in 

order to evaluate the results achieved by the proposed automatic segmentation. 

For the evaluation of the proposed method, five kinds of metrics were used. 

Based on the intersurface distance evaluation, RMS, Hausdorff distance (HD), and 

the mean distance were calculated. 

 

1) The RMS of the intersurface distance was used to evaluate the reconstructed 

surface mismatch (Equation 3.1). 

 

2) The Hausdorff distance (HD) was calculated by: 

 

   ),(),,(max, ABhBAhBAHD  ,  (5.2) 
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 where, ),( BAh stands for the direct Hausdorff distance: 
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3) The mean intersurface distance (MSD) was calculated by: 
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 Positive and negative MSD values were calculated as well. 

 

 Based on the volume overlap, it is common to use the Dice similarity 

coefficient (DSC) to measure the proposed automatic segmentation reproducibility 

(repeatability) (2). 

4) DSC was calculated by: 

 BA

BA
DSC






2
,  (5.5) 

 where, A represents the volume of the reference model, B is the volume of the 

automatically segmented bone. 

 

 An additional metric was calculated to evaluate the speed of segmentation 

(Time). In this study, a personal computer with the following parameters: processor 

– Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz, RAM – 16 GB, system type – 64-

bit Windows 10 Operating System was used. The automatic method was 

implemented by using the Matlab (license number – 40875229, Mathworks, USA) 

software. 

 

The implementation of the proposed method was based on the finding of the 

optimal threshold by using Otsu’s method in a sliding 3D window. The volume (V = 

191 cm3) and the shift (px, y, z = 29 mm) of the window were set based on the research 

results with anatomical models as described in the previous chapter.  

 

First of all, each processed histogram of the CBCT dataset was analyzed in 

order to automatically find thresholds for the filtration of irrelevant areas (air and 

internal anatomical structures containing air). Otsu’s method was applied to 

implement it. The upper threshold (>1250 HU) for the filtration was selected by 

using data from Mitch et al. (135) classification.  

 

During the second step, the optimal threshold values were found locally in the 

determined volume of the 3D window after each determined shift. The optimal 

thresholds were found by Otsu’s method. 
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 During the third step, the matrix of local thresholds L(x, y, z) was filled in. 

 Finally, the surface reconstruction of the segmented voxels of facial bones was 

performed. Segmented facial bones are saved as a surface in the STL file format. 

The surface reconstruction of facial bones from segmented voxels is performed by 

the volumetric reconstruction algorithm (Visualization and Computer Graphics 

(VCG) reconstruction filter) while using the MeshLab software (Visual Computing 

Lab of ISTI–CNR, University of Pisa) (Fig. 5.5). 

 
 

 

 

 

 

 

 

 

Fig. 5.5. Surface reconstruction of segmented facial bones. The surface of facial bones after 

segmentation (at the top), the reconstructed surface of facial bones (at the bottom). Small 

fragments of surfaces before and after reconstruction are presented in rectangles 

 For the basic parameters of surface reconstruction, the same values (the voxel 

size, the level of the subvolume reconstruction process, geodesic weighting, the 

number of Volume Laplacian iterations, widening, the number of smoothing 

iterations) were used for all the forty cases in order to obtain comparable results of 

reconstruction. 

Results. The mean RMS value of the intersurface distance in preoperative 

cases was 0.559 (SD ± 0.099) mm, whereas, in the postoperative cases, this value 
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was 0.647 (SD ± 0.175) mm. The calculated RMS values of the intersurface distance 

for all the cases are presented by a boxplot in Figure 5.6. 

 

Fig. 5.6. Distributions of RMS values of preoperative and postoperative segmentation data 

The interquartile range of the boxplot is narrower for preoperative RMS 

values. The bigger distribution of RMS values is seen in the postoperative cases. 

This could have been caused by a better quality of the preoperative CBCT datasets. 

Also, for geometrical differences, HD values were calculated for each group: 

preoperative and postoperative.  The mean value of HD was 0.239 (SD ± 0.049) mm 

in the preoperative cases, and 0.312 (SD ± 0.148) mm in the postoperative cases. 

The results of the calculated HD values in each group are presented by the boxplot 

function (Fig. 5.7). 

 

Fig. 5.7. Distribution of HD values of preoperative and postoperative segmentation data 
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Three values of HD are out of the HD range in the postoperative cases; they 

are marked as outliers.  

The calculated different MSD values are presented in Table 5.2. 

Table. 5.2. Calculated positive (+MSD), negative (–MSD), and mean MSD values 

in each group 

Preoperative Postoperative 

+MSD, mm MSD, mm –MSD, mm +MSD, mm MSD, mm – MSD, mm 

0.102 0.043 – 0.960 0.139 0.057 – 0.065 

The achieved results showed very small discrepancies between the surfaces 

segmented by a surgeon and segmented with the proposed method. The bigger MSD 

values are calculated in the postoperative cases.  

The mean value of DSC was 0.921 (SD ± 0.015) in the preoperative cases. In 

the postoperative cases, the mean value of DSC was 0.911 (SD ± 0.021). The 

calculated DSC values are similar and are very high – they are more than 0.9. The 

results of DSC in the preoperative and postoperative segmentation data are presented 

by using the boxplot function in Figure 5.8. The narrower range of the interquartile 

is found in the postoperative cases. Two DSC values are out of the DSC range in the 

postoperative cases and are marked as outliers. 

 

Fig. 5.8. Distribution of DSC values of preoperative and postoperative segmentation data 

The applied paired t-tests were calculated in order to evaluate the differences 

between the volumes of the segmented facial bones by a surgeon and the volumes 

obtained by the proposed automatic segmentation method in each group. The 

differences of each group were insignificant (p = 0.76 in the preoperative cases, p = 

0.82 in the postoperative cases). 

The measured computing time in order to perform automatic segmentation is 

presented in Figure 5.9.  
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Fig. 5.9. Distribution of computing time values in order to perform automatic segmentation 

in different cases 

The interquartile range of the boxplot is narrower for the preoperative cases. 

The mean value of the computing time in the preoperative cases is 45 (SD ± 3.43) s, 

in the postoperative cases, it is 47 (SD ± 2.18) s. 

The achieved results of segmentation by the proposed method are presented in 

Table 5.3. 

Table. 5.3. The calculated metrics to evaluate segmentation results by the proposed 

method 
Metric Proposed 

RMS, mm (0.559 ± 0.099)a | (0.647 ± 0.176)b 

HD, mm (0.239 ± 0.049)a | (0.312 ± 0.148)b 

MSD, mm (0.043 ± 0.106)1a | (0.102 ± 0.048)2a | (– 0.096 ± 0.064)3a 

(0.057 ± 0.134)1b | (0.139 ± 0.013)2b | (– 0.065 ± 0.061)3b 

DSC (0.921 ± 0.015)a | (0.911 ± 0.021)b 

Time, s (45 ± 3.43)a | (46 ± 2.18)b 

a – preoperative CBCT, b – postoperative CBCT, 1 – MSD, 2 – positive MSD, 3 – negative MSD 

RMS, HD, MSD, DSC, and the speed of segmentation (Time) were the most 

popular metrics to prove the accuracy of automatic segmentation while using 

different methods. The achieved values of DSC were similar (the values were close 

to 0.9) compared to other studies (6, 15, 16). The calculated HD values were lower 

compared to other studies. Moreover, the calculated HD values in other studies were 

for mandibles. In the proposed study, HD values were calculated for all the facial 

bones. MSD was also a common metric serving to evaluate the segmentation results 

in all the studies. In our study, MSD was calculated and divided into three groups. 

The results between the MSD values in different groups (preoperative and 

postoperative) were compared. It was found that the differences were similar. In 



78 

 

comparison to the other studies, when using the proposed method, significantly 

lower MSD values were found in this study. Finally, the proposed method showed a 

very short computational time required to perform automatic segmentation for the 

facial bones. 

The results of segmentation by the proposed method showed that low density 

bones were not completely segmented. However, the areas of condyles and sinuses 

with fewer holes were segmented by using the proposed method compared to the 

surgeon’s segmentation results (Fig. 5.10 and Fig. 5.11). 

 

        

 

         

Fig. 5.10. Visual evaluation of two randomly selected 3D models by using different 

segmentation methods. A – segmented with the proposed method, B – represents 3D models 

segmented by using the global threshold method by the surgeon  

The presented results showed more accurate segmentation in the area of 

sinuses by using the proposed method. In clinical practice, this is important for the 

A 

B 
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surgeon preparing more accurate VSP, or for more accurate fabrication of the 

patient-specific guide. 

 

 

Fig. 5.11. Visual evaluation of 3D models segmented by using the proposed method and the 

global threshold method by the surgeon  

In the mandibular region, the segmentation accuracy of the condyles is higher 

with the proposed method. The better quality of condyles segmentation can help to 
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accurately and objectively evaluate the changes after the performed surgery or after 

orthodontic treatment. Most commonly, condyles segmentation is complicated 

because the density of the condyles is similar to the soft tissue. Therefore, manual 

segmentation is used to obtain the complete surface of the condyles. 

Discussion. Automatic methods for bone segmentation are very important in 

medicine. They can help surgeons make correct diagnoses, prepare accurate VSP, 

and evaluate the postoperative follow-up without the influence of the surgeon’s 

experience (3 – 5, 95, 103). The aim of this research was to develop and investigate 

the automatic method for facial bones segmentation in CBCT datasets. The method 

is based on the histogram filter, the 3D sliding window, and Otsu’s thresholding. 

The results of automatic segmentation revealed sufficient clinical/practical accuracy 

of facial bones segmentation.  

In this study, three metrics were used for the evaluation of the reconstructed 

3D surface distance – RMS, HD, and MSD, for the evaluation of volumetric overlap 

evaluation, DSC was used (2, 156, 157). An additional metric based on the time to 

perform segmentation – the speed of segmentation – was measured. The mean DSC 

values of the two groups (preoperative and postoperative) were greater than 0.9, 

which demonstrates the complete volumetric overlap between the automatically 

segmented volume and the volume segmented by a surgeon. The mean RMS values 

of the intersurface distance for the preoperative (0.559 mm) and the postoperative 

(0.647 mm) cases were about two times bigger than the voxel size (0.3 mm). The 

calculated HD, MSD values showed small discrepancies between the surfaces. This 

indicates that the segmentation result is accurate. We succeeded to avoid the 

superimposition step because both automatic and global segmentations were made 

by using the same source datasets. In this way, surface superimposition did not yield 

any additional errors. Compared to the other studies (6, 15, 16, 19, 100), the 

proposed method performed the segmentation very rapidly (46 s/case). The obtained 

results showed that the proposed automatic method worked accurately.  

Further studies may concentrate on evaluating the proposed method with a 

higher amount and different kind(s) of CT/CBCT datasets. The next direction of 

further study may be to increase the quality of the segmentation for anatomical 

regions with a low bone’s density. Fully automatic segmentation of the selected 

anatomical areas, especially those of condyles, would be an important tool to 

increase the evaluation of the treatment or the postoperative follow-up (45, 158). 

 

5.4 Limitations of the study 

The main limitation of this study was that the evaluation of the automatic 

method based on the segmentation results was performed by only one expert (an 

orthognathic surgeon) who performs 3D segmentations of facial bones on the daily 

basis. Accurate evaluation of segmentation can be performed by using software or a 

hardware phantom (159 – 162) or a cadaver with the soft tissue (100, 153). 

However, this was not possible in this study due to financial and technical 

constraints. 3D segmentations will be updated in further studies by other experts 

with the expectation of reducing inter- and intra-observer variability and ensuring 
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accurate evaluation of 3D segmentation by the proposed method. It is important to 

emphasize that the CBCT datasets were obtained with the acquisition parameters 

used in the routine clinical practice to scan the patient’s head before and after the 

orthognathic surgery. CBCT datasets with higher resolution could not be obtained 

due to the scanning limitations of the CBCT device. In addition, the CBCT images 

were not filtered for metal artefacts (brackets, metal plates, and mini-implants) 

before or after segmentation. For this reason, metal artefacts were seen in the 3D 

models. These artefacts hide important areas of the bone. Therefore, the assessment 

of the bone near these artefacts became complicated and inaccurate. This is 

especially important when postoperative follow-ups are performed (163, 164). 

Another limitation of the proposed method is the difficulty in segmenting low 

density anatomical regions (thin anatomical regions, e.g., the alveolar part of the 

mandible, mandibular condyles, or maxillary sinuses) in CBCT images (165). This 

is also valid for other threshold-based segmentation methods. Problematic areas 

could be segmented by including more sensitive techniques (165 – 168). 

5.5 Conclusions of the chapter 

1. The statistically significant difference between the preoperative and 

postoperative CBCT datasets was found only by comparing the 

distribution of HU values in the soft tissue (p < 0.05). The voxels 

distribution of the facial bones is not evident when comparing the 

preoperative and postoperative CBCT datasets. 

2. A fast and efficient automatic method for the segmentation of the facial 

bones in the CBCT dataset was developed. The volumetric differences 

between the automatically segmented facial bones and the surgeon 

segmentation were not statistically significant (p > 0.05). 

3. The best segmentation results by the calculated metrics were obtained 

when preoperative CBCT datasets were used. Postoperative CBCT 

datasets were obtained approximately one week after the surgery. A more 

swollen soft tissue, as well as additional metal artefacts (metal plates and 

screws) had a significant impact on the quality of CBCT images. For these 

reasons, lower segmentation accuracy was obtained in the postoperative 

cases. 

4. The most important feature of the proposed segmentation method is its 

ease and speed of implementation. The method does not require access to 

a computer with high computing power. It can be integrated with the most 

common medical 3D image processing software using an ordinary 

computer.  
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6 GENERAL CONCLUSIONS 

1. The distribution of voxels HU values was investigated in the histograms of 

preoperative and postoperative CBCT datasets. The research showed that a 

significant difference was observed in the soft tissue area when comparing 

preoperative and postoperative CBCT datasets. It was found that the reason 

for it was the fact that the soft tissue was swollen after the performed 

orthognathic surgery. The results of the research showed that the voxels 

distribution of the facial bones could not be clearly identified. Determining 

the threshold between the soft tissue and the bone is complicated. For this 

reason, more accurate and sensitive methods are needed than the global 

thresholding method which is most commonly used in the clinical practice. 

Also, in order to reduce the time required to perform accurate evaluation of 

the patient’s condition (during different phases of treatment) and to exclude 

the user’s experience (in performing an accurate virtual surgical plan), an 

automatic segmentation method is required. 
 

2. An automatic method for facial bones segmentation in the CBCT dataset 

was developed. Three basic parts were used in the developed method: a 

Histogram filter, a 3D sliding window, and Otsu’s thresholding method. The 

histogram filter was chosen to maintain the conditions in order to leave two 

useful anatomical regions from the histogram which were defined between 

the soft tissue and the facial bones. The 3D sliding window made the 

segmentation local by the determined volume and the shift of the 3D 

window.  

 

3. The investigation of the 3D sliding window was performed to evaluate its 

influence on the segmentation results. The best repeatability of the two 3D 

model outer surfaces is achieved when the volume of the 3D window is 191 

cm3, and the shift of the 3D window is 29 mm. This selection was based on 

the aggregate estimation of the segmentation time and the 3D deviation by 

calculating RMS between the automatically segmented and optically 

scanned (reference) outer surfaces. 

 

4. The proposed automatic method for the facial bones segmentation was 

investigated and evaluated against the results of reference segmentations 

performed by an experienced surgeon. Forty CBCT datasets were used. The 

calculated performance metrics (RMS, HD, DSC, MSD, and the 

segmentation time) showed high clinical accuracy of segmentation. The 

proposed automatic method could be applied in the clinical practice 

(especially in orthognathic surgery). The implementation of the proposed 

method is simple and fast; it does not require access to a computer with high 

computing power.  



 83 

 

LIST OF PUBLICATIONS 

Publications indexed in the Web of Science with impact factor 

 

1. Rutkūnas, V; Gečiauskaitė, A; Jegelevičius, D; Vaitiekūnas, M. (2017). 

Accuracy of digital implant impressions with intraoral scanners. A 

systematic review. European Journal of Oral Implantology.  Volume: 10 

Pages: 101-120 Supplement: 1. [IF: 2.809] 

2. Vaitiekūnas, M; Jegelevičius, D; Sakalauskas, A; Grybauskas, S. (2020). 

Automatic Method for Bone Segmentation in Cone Beam Computed 

Tomography Data Set. Applied Sciences-Basel. Volume: 10 Issue: 1. [IF: 

2.217] 

 

Publications in proceedings of the international scientific conferences 

 

1. Vaitiekūnas, M; Jegelevičius, D; Sakalauskas, A; Grybauskas, S. Method 

for Automatic 3D Bone Segmentation in CBCT Data. Abstract book at 

EMBEC'17 & NBC'17: the joint conference of the European medical and 

biological engineering conference (EMBEC) and the Nordic-Baltic 

conference on biomedical engineering and medical physics (NBC), June 11-

15, 2017, Tampere, Finland / organized by BioMediTech, Finnish Society 

for Medical Physics and Medical Engineering. [S.l.]: [s.n.]. 2017, 471, p. 

184. 

2. Vaitiekūnas, M. Evaluation of short and long-term surgical outcomes and 

morphological changes by means of superimposition. Oral presentation. 

BSCOSO (Baltic Sea Community on Orthognathic Surgery and 

Orthodontics) Winter Course.  Lithuania, Vilnius. 2018. 

3. Vaitiekūnas, M. Automatinė veidinės dalies kaulų segmentacija 

kompiuterinės tomografijos vaizduose. Fizinių ir technologijos mokslų 

tarpdalykiniai tyrimai: 10-oji jaunųjų mokslininkų konferencija: pranešimų 

santraukos. Vilnius: [Lietuvos mokslų akademija]. 2020. p. 27. 

  



84 

 

REFERENCES 

1. WALLNER, Jürgen, et al. Computed tomography data collection of the 

complete human mandible and valid clinical ground truth 

models. Scientific data. 2019, (6): 190003.  

2. TAHA, A. A. and A. HANBURY. Metrics for evaluating 3D medical 

image segmentation: analysis, selection, and tool. BMC medical imaging. 

2015, 15(29). 

3. LEBRE, Marie-Ange, et al. Automatic segmentation methods for liver 

and hepatic vessels from CT and MRI volumes, applied to the Couinaud 

scheme. Computers in biology and medicine. 2019, 110, 42-51.  

4. SAKINIS, Tomas, et al. Interactive segmentation of medical images 

through fully convolutional neural networks. arXiv preprint 

arXiv:1903.08205, 2019. 

5. FRIPP, Jurgen, et al. Automatic segmentation of the bone and extraction 

of the bone–cartilage interface from magnetic resonance images of the 

knee. Physics in Medicine & Biology. 2007, 52(6), 1617-1631. 

6. WANG, Li, et al. Automated segmentation of CBCT image using spiral 

CT atlases and convex optimization. In: International Conference on 

Medical Image Computing and Computer-Assisted Intervention. Springer, 

Berlin, Heidelberg, 2013. pp. 251-258. 

7. DESPOTOVIĆ, Ivana, et al. MRI segmentation of the human brain: 

challenges, methods, and applications. Computational and mathematical 

methods in medicine. 2015, 2015. 

8. HWANG, Shik, et al. Maxillofacial 3-dimensional image analysis for the 

diagnosis of facial asymmetry. American journal of orthodontics and 

dentofacial orthopaedics. 2006, 130(6) 779-785. 

9. STOKBRO, K., et al. Virtual planning in orthognathic surgery. 

International journal of oral and maxillofacial surgery. 2014, 43(8), 957-

965. 

10. FAN, Yi, et al. 3D assessment of mandibular skeletal effects produced by 

the Herbst appliance. BMC Oral Health. 2020, 20, 1-9. 

11. SHAHEEN, E., et al. Three-dimensional planning accuracy and follow-up 

protocol in orthognathic surgery: a validation study. International journal 

of oral and maxillofacial surgery. 2019, 48(1), 71-76. 

12. PAUWELS, Ruben, et al. CBCT-based bone quality assessment: are 

Hounsfield units applicable? Dentomaxillofacial Radiology. 2015, 44(1). 

13. PAUWELS, Ruben, et al. Variability of dental cone beam CT grey values 

for density estimations. The British journal of radiology. 2013, 86(1021). 

14. KATSUMATA, Akitoshi, et al. Image artifact in dental cone-beam 

CT. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and 

Endodontology. 2006, 101(5), 652-657. 

15. WANG, Li, et al. Automated bone segmentation from dental CBCT 

images using patch‐based sparse representation and convex optimization. 

Medical physics. 2014, 41(4), 1-14. 



 85 

 

16. WANG, Li, et al. Automated segmentation of dental CBCT image with 

prior‐guided sequential random forests. Medical physics. 2016, 43(1), 

336-346. 

17. MINNEMA, Jordi, et al. CT image segmentation of bone for medical 

additive manufacturing using a convolutional neural network. Computers 

in biology and medicine. 2018, 103, 130-139. 

18. GOLLMER, S., T., and T., M., BUZUG. Fully automatic shape 

constrained mandible segmentation from cone-beam CT data. In: 2012 

9th IEEE International Symposium on Biomedical Imaging (ISBI), May 2-

5, 2012, Barcelona, Spain. IEEE, 2012. pp. 1272-1275. 

19. FAN, Yi, et al. Marker-based watershed transform method for fully 

automatic mandibular segmentation from CBCT 

images. Dentomaxillofacial Radiology. 2019, 48(2). 

20. VAN EIJNATTEN, Maureen, et al. CT image segmentation methods for 

bone used in medical additive manufacturing. Medical engineering & 

physics. 2018, 51, 6-16. 

21. JINKINS, J. Randy (ed.). Atlas of neuroradiologic embryology, anatomy, 

and variants. Lippincott Williams & Wilkins, 2000. 

22. MARDIA, Kanti, et al. Statistical assessment of bilateral symmetry of 

shapes. Biometrika. 2000, 87(2), 285-300. 

23. CHEONG, Y., W., and L. LUN-JOU. Facial asymmetry: etiology, 

evaluation, and management. Chang Gung Medical Journal. 2011, 34(4), 

341-351. 

24. LUNDSTRÖM, Anders. Some asymmetries of the dental arches, jaws, 

and skull, and their etiological significance. American Journal of 

Orthodontics. 1961, 47(2), 81-106. 

25. BISHARA, S., E., et al. Dental and facial asymmetries: a review. The 

Angle Orthodontist. 1994, 64(2), 89-98. 

26. ANISON, Job Jacob et al. Understanding Asymmetry–A 

Review. Biomedical and Pharmacology Journal. 2015, 8(October Spl 

Edition), 659-668. 

27. SRIVASTAVA, Dhirendra, et al. Facial asymmetry revisited: Part I-

diagnosis and treatment planning. Journal of oral biology and 

craniofacial research. 2018, 8(1), 7-14. 

28. WANG, Tim T., et al. Discriminative thresholds in facial asymmetry: a 

review of the literature. Aesthetic surgery journal. 2017, 37(4), 375-385. 

29. SHACKELFORD, T., K., and R., J., LARSEN. Facial asymmetry as an 

indicator of psychological, emotional, and physiological distress. Journal 

of personality and social psychology. 1997, 72(2), 456-466. 

30. THORNHILL, R., and A., P., MØLLER. Developmental stability, disease 

and medicine. Biological Reviews. 1997, 72(4), 497-548. 

31. BUSS, David M. Sex differences in human mate selection criteria: An 

evolutionary perspective. Sociobiology and psychology: Ideas, issues, and 

applications. 1987, 335-352. 



86 

 

32. RHODES, Gillian, et al. Facial symmetry and the perception of beauty. 

Psychonomic Bulletin & Review. 1998, 5(4), 659-669. 

33. SAMMAN, Nabil, et al. Analysis of 300 dentofacial deformities in Hong 

Kong. The International journal of adult orthodontics and orthognathic 

surgery. 1992, 7(3), 181-185. 

34. SEVERT, T., R., and W., R., PROFFIT. The prevalence of facial 

asymmetry in the dentofacial deformities population at the University of 

North Carolina. The International journal of adult orthodontics and 

orthognathic surgery. 1997, 12(3), 171-176. 

35. HARAGUCHI, Seiji, et al. Facial asymmetry in subjects with skeletal 

Class III deformity. The Angle Orthodontist. 2002, 72(1), 28-35. 

36. KATSUMATA, Akitoshi, et al. 3D-CT evaluation of facial asymmetry. 

Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and 

Endodontology. 2005, 99(2), 212-220. 

37. CHEW, Ming Tak. Spectrum and management of dentofacial deformities 

in a multiethnic Asian population. The Angle Orthodontist. 2006, 76(5), 

806-809. 

38. LITJENS, Geert, et al. A survey on deep learning in medical image 

analysis. Medical Image Analysis. 2017, 42, 60-88. 

39. PHAM, D., L., et al. Current methods in medical image 

segmentation. Annual review of biomedical engineering, 2000, 2(1), 315-

337. 

40. HO, Cheng-Ting, et al. Three-dimensional surgical simulation improves 

the planning for correction of facial prognathism and asymmetry: A 

qualitative and quantitative study. Scientific reports. 2017, 7(1), 1-10.  

41. SANTANDER, Petra, et al. Comprehensive 3D analysis of condylar 

morphology in adults with different skeletal patterns – a cross-sectional 

study. Head & Face Medicine. 2020, 16(1), 1-10. 

42. LIN, Hsiu-Hsia, et al. 3D printing in orthognathic surgery − A literature 

review. Journal of the Formosan Medical Association. 2018, 117(7), 547-

558. 

43. LOUBELE, Miet, et al. Assessment of bone segmentation quality of CT 

scanners using laser scanning. International Journal of Computer Assisted 

Radiology and Surgery. 2006, 1(7), 400-402. 

44. POLETI, M., L., et al. Analysis of linear measurements on 3D surface 

models using CBCT data segmentation obtained by automatic standard 

pre-set thresholds in two segmentation software programs: an in vitro 

study. Clinical oral investigations. 2016, 20(1), 179-185. 

45. ENGELBRECHT, W., P., et al. The influence of the segmentation 

process on 3D measurements from cone beam computed tomography-

derived surface models. Clinical oral investigations. 2013, 17(8), 1919-

1927. 

46. AKHIL, Gopi, et al. Three-dimensional assessment of facial asymmetry: 

A systematic review. Journal of pharmacy & bioallied sciences. 2015, 

7.Suppl 2: S433. 



 87 

 

47. BENGTSSON, Martin, et al. Treatment outcome in orthognathic surgery 

– A prospective comparison of accuracy in computer assisted two and 

three-dimensional prediction techniques. Journal of Cranio-Maxillofacial 

Surgery. 2018, 46(11), 1867-1874. 

48. LO, Lun-Jou, et al. Computer-assisted orthognathic surgery for patients 

with cleft lip/palate: from traditional planning to three-dimensional virtual 

surgery simulation. The Cleft Palate-craniofacial Journal. 2016, 53(4), 

e0152014. 

49. CUI, Z., et al. Automatic tooth instance segmentation and identification 

from cone beam CT images. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2019. pp. 6368-6377. 

50. LEE, R., J., et al. Monitoring of typodont root movement via crown 

superimposition of single cone-beam computed tomography and 

consecutive intraoral scans. American Journal of Orthodontics and 

Dentofacial Orthopedics. 2014, 145(3), 399-409. 

51. JUNG, W., et al. Combining volumetric dental CT and optical scan data 

for teeth modeling. Computer-Aided Design. 2015, 67, 24-37. 

52. MORCOS, S., S., and P., K., PATEL. The vocabulary of dentofacial 

deformities. Clinics in plastic surgery. 2007, 34(3), 589-599. 

53. BAI, Shizhu, et al. Computer-aided design and computer-aided 

manufacturing locating guides accompanied with prebent titanium plates 

in orthognathic surgery. Journal of oral and maxillofacial surgery. 2012, 

70(10), 2419-2426. 

54. ISSA S., A. and H., A. ABDULNABI. Outcomes of using pre-bent 

reconstruction plates in mandibular reconstruction. European Journal of 

oral and Maxillofacial Surgery. 2020, 4(1), 1-7. 

55. HU, YiHui, et al. Simultaneous treatment of temporomandibular joint 

ankylosis with severe mandibular deficiency by standard TMJ 

prosthesis. Scientific Reports. 2017, 7, 45271. 

56. KIM, Jung-Hoon, et al. Accuracy of 3-dimensional virtual surgical 

simulation combined with digital teeth alignment: a pilot study. Journal of 

Oral and Maxillofacial Surgery. 2017, 75(11), 2441.e1-2441.e13. 

57. HWANG, Hyeon-Shik, et al. Maxillofacial 3-dimensional image analysis 

for the diagnosis of facial asymmetry. American journal of orthodontics 

and dentofacial orthopedics. 2006, 130(6), 779-785. 

58. JI, H., et al. Computer-assisted osteotomy guides and pre-bent titanium 

plates improve the planning for correction of facial 

asymmetry. International journal of oral and maxillofacial surgery. 2019, 

48(8), 1043-1050. 

59. SWENNEN, Gwen RJ, et al. Three-dimensional treatment planning of 

orthognathic surgery in the era of virtual imaging. Journal of oral and 

maxillofacial surgery. 2009, 67(10), 2080-2092. 

60. CEVIDANES, Lucia HC, et al. Clinical application of 3D imaging for 

assessment of treatment outcomes. Seminars in orthodontics. 2011, 17(1), 

72-80. 



88 

 

61. CHEN, Hui, et al. Accuracy of MDCT and CBCT in three-dimensional 

evaluation of the oropharynx morphology. European Journal of 

Orthodontics. 2018, 40(1), 58-64. 

62. HAMMOUDEH, J., A., et al. Current status of surgical planning for 

orthognathic surgery: traditional methods versus 3D surgical 

planning. Plastic and reconstructive surgery Global open. 2015, 3(2), 

e307. 

63. Materialise Mimics. Available online: 

https://www.materialise.com/en/medical/mimics-innovation-suite/mimics 

(accessed on 5 May 2017).  

64. Dolphin imaging. Available online: https://www.dolphinimaging.com/ 

(accessed on 15 December 2015). 

65. NemoFab. Available online: 

https://www.nemotec.com/en/software/nemofab (accessed on 4 July 

2017). 

66. MARDINI, Samir, et al. Three-dimensional preoperative virtual planning 

and template use for surgical correction of craniosynostosis. Journal of 

Plastic, Reconstructive & Aesthetic Surgery. 2014, 67(3), 336-343. 

67. GARCÍA-MATO, D., et al. Craniosynostosis surgery: workflow based on 

virtual surgical planning, intraoperative navigation and 3D printed 

patient-specific guides and templates. Scientific reports. 2019, 9(1), 1-10. 

68. CAITI, Giuliana, et al. Positioning error of custom 3D-printed surgical 

guides for the radius: influence of fitting location and guide 

design. International journal of computer assisted radiology and surgery. 

2018, 13(4), 507-518. 

69. LI, Biao, et al. A new approach of splint-less orthognathic surgery using a 

personalized orthognathic surgical guide system: a preliminary 

study. International journal of oral and maxillofacial surgery. 2017, 

46(10), 1298-1305. 

70. GIOVANNI, Badiali, et al. Validation of a patient-specific system for 

mandible-first bimaxillary surgery: ramus and implant positioning 

precision assessment and guide design comparison. Scientific Reports. 

2020, 10(1). 

71. STEINBACHER, D., M. Three-dimensional analysis and surgical 

planning in craniomaxillofacial surgery. Journal of Oral and 

Maxillofacial Surgery. 2015, 73(12), S40-S56. 

72. YANG, Wei-fa, et al. Three-dimensional printing of patient-specific 

surgical plates in head and neck reconstruction: a prospective pilot 

study. Oral oncology. 2018, 78, 31-36. 

73. KRAEIMA, J., et al. Splintless surgery: does patient-specific CAD-CAM 

osteosynthesis improve accuracy of Le Fort I osteotomy?. British Journal 

of Oral and Maxillofacial Surgery. 2016, 54(10), 1085-1089. 

74. CEVIDANES, Lucia HS, et al. Superimposition of 3D cone-beam CT 

models of orthognathic surgery patients. Dentomaxillofacial Radiology. 

2005, 34(6), 369-375. 

https://www.dolphinimaging.com/
https://www.nemotec.com/en/software/nemofab


 89 

 

75. WEISSHEIMER, André, et al. Fast three-dimensional superimposition of 

cone beam computed tomography for orthopaedics and orthognathic 

surgery evaluation. International journal of oral and maxillofacial 

surgery. 2015, 44(9), 1188-1196. 

76. SHAHEN, Shereef, et al. United Reference Method for three-dimensional 

treatment evaluation. Progress in orthodontics. 2018, 19(1), 1-8. 

77. GKANTIDIS, Nikolaos, et al. Evaluation of 3-dimensional 

superimposition techniques on various skeletal structures of the head 

using surface models. PLoS One. 2015, 10(2), e0118810. 

78. PERIAGO, Danielle R., et al. Linear accuracy and reliability of cone 

beam CT derived 3-dimensional images constructed using an orthodontic 

volumetric rendering program. The Angle Orthodontist. 2008, 78(3), 387-

395. 

79. SUOMALAINEN, Anni, et al. Accuracy of linear measurements using 

dental cone beam and conventional multislice computed 

tomography. Dentomaxillofacial Radiology. 2008, 37(1), 10-17. 

80. LIANG, Xin, et al. A comparative evaluation of cone beam computed 

tomography (CBCT) and multi-slice CT (MSCT). Part II: On 3D model 

accuracy. European journal of radiology. 2010, 75(2), 270-274. 

81. KOERICH, Leonardo, et al. Rapid 3D mandibular superimposition for 

growing patients. The Angle Orthodontist. 2017, 87(3), 473-479. 

82. ALMUKHTAR, Anas, et al. Comparison of the accuracy of voxel based 

registration and surface based registration for 3D assessment of surgical 

change following orthognathic surgery. PloS One. 2014, 9(4), e93402. 

83. HÄNER, Simeon T., et al. Voxel‐based superimposition of serial 

craniofacial CBCTs: Reliability, reproducibility and segmentation effect 

on hard‐tissue outcomes. Orthodontics & craniofacial research. 2020, 

23(1), 92-101. 

84. GARIB, Daniela, et al. Superimposition of maxillary digital models using 

the palatal rugae: Does ageing affect the reliability? Orthodontics & 

craniofacial research. 2019, 22(3), 183-193. 

85. PARK, Tae-Joon, et al. A method for mandibular dental arch 

superimposition using 3D cone beam CT and orthodontic 3D digital 

model. The Korean Journal of Orthodontics, 2012, 42(4), 169-181. 

86. PONCE-GARCIA, Cecilia, et al. Measurement error and reliability of 

three available 3D superimposition methods in growing patients. Head & 

Face Medicine, 2020, 16(1), 1. 

87. CEVIDANES, Lucia HC, et al. Superimposition of 3-dimensional cone-

beam computed tomography models of growing patients. American 

Journal of Orthodontics and Dentofacial Orthopedics. 2009, 136(1), 94-

99. 

88. NGUYEN, Tung, et al. Three-dimensional mandibular regional 

superimposition in growing patients. American Journal of Orthodontics 

and Dentofacial Orthopedics. 2018, 153(5), 747-754. 



90 

 

89. RUELLAS, Antonio Carlos de Oliveira, et al. 3D mandibular 

superimposition: comparison of regions of reference for voxel-based 

registration. PLoS One. 2016, 11(6), e0157625. 

90. LIEBREGTS, Jeroen, et al. One-year postoperative skeletal stability of 

3D planned bimaxillary osteotomies: maxilla-first versus mandible-first 

surgery. Scientific reports. 2019, 9(1), 1-9. 

91. TONIN, Renata Hernandes, et al. Accuracy of 3D virtual surgical 

planning for maxillary positioning and orientation in orthognathic 

surgery. Orthodontics & Craniofacial Research. 2020, 23(2), 229-236. 

92. WEISSHEIMER, A., et al. Fast three-dimensional superimposition of 

cone beam computed tomography for orthopaedics and orthognathic 

surgery evaluation. International journal of oral and maxillofacial 

surgery. 2015, 44(9), 1188-1196. 

93. CHANG, Yu-Jen, et al. Accuracy assessment of computer-aided three-

dimensional simulation and navigation in orthognathic surgery 

(CASNOS). Journal of the Formosan Medical Association. 2020, 119(3), 

701-711. 

94. JAYARATNE, Yasas SN, et al. Three-dimensional color maps: a novel 

tool for assessing craniofacial changes. Surgical innovation. 2010, 17(3), 

198-205. 

95. WALLNER, Jürgen, et al. Clinical evaluation of semi-automatic open-

source algorithmic software segmentation of the mandibular bone: 

Practical feasibility and assessment of a new course of action. PLoS One. 

2018, 13(5), e0196378. 

96. KRČAH, Marcel, et al. Fully automatic and fast segmentation of the 

femur bone from 3D-CT images with no shape prior. In 2011 IEEE 

international symposium on biomedical imaging: from nano to macro. 

March 30 – April 2, 2012, Chicago, IL, USA. IEEE, 2011. pp. 2087-2090. 

97. LINARES, Oscar Cuadros, et al. Mandible and skull segmentation in cone 

beam computed tomography using super-voxels and graph clustering. The 

Visual Computer. 2019, 35(10), 1461-1474. 

98. WANG, L., I., et al. Validation of bone segmentation and improved 3-D 

registration using contour coherency in CT data. IEEE transactions on 

medical imaging. 2006, 25(3), 324-334. 

99. CHANG, Yu-Bing, et al. 3D segmentation of maxilla in cone-beam 

computed tomography imaging using base invariant wavelet active shape 

model on customized two-manifold topology. Journal of X-ray science 

and technology. 2013, 21(2), 251-282. 

100. VAN EIJNATTEN, Maureen, et al. The impact of manual threshold 

selection in medical additive manufacturing. International Journal of 

Computer Assisted Radiology and Surgery. 2017, 12(4), 607-615. 

101. OTSU, Nobuyuki. A threshold selection method from gray-level 

histograms. IEEE transactions on systems, man, and cybernetics. 1979, 

9(1), 62-66. 



 91 

 

102. BARANDIARAN, Iñigo, et al. An automatic segmentation and 

reconstruction of mandibular structures from CT-data. In: International 

Conference on Intelligent Data Engineering and Automated Learning. 

Springer, Berlin, Heidelberg, 2009. p. 649-655. 

103. INDRASWARI, Rarasmaya, et al. Automatic segmentation of mandibular 

cortical bone on cone-beam CT images based on histogram thresholding 

and polynomial fitting.  International Journal of Intelligent Engineering 

and Systems. 2019, 12(4), 130-141. 

104. ARIFIN, A., Z., and A. ASANO. Image segmentation by histogram 

thresholding using hierarchical cluster analysis. Pattern recognition 

letters. 2006, 27(13), 1515-1521. 

105. HOJJATOLESLAMI, S., A. and J., KITTLER. Region growing: a new 

approach. IEEE Transactions on Image processing. 1998, 7(7), 1079-

1084. 

106. XI, Tong, et al. A novel region-growing based semi-automatic 

segmentation protocol for three-dimensional condylar reconstruction 

using cone beam computed tomography (CBCT). PloS One. 2014, 9(11), 

e111126. 

107. CHEN, Xiaojun, et al. A semi-automatic computer-aided method for 

surgical template design. Scientific reports. 2016, 6(1), 1-18. 

108. DUTAILLY, Bruno, et al. 3D surface reconstruction using HMH 

algorithm. In: 2009 16th IEEE International Conference on Image 

Processing (ICIP). IEEE, 2009. p. 2505-2508. 

109. LORENSEN, W., E. and H., E., CLINE. Marching cubes: A high 

resolution 3D surface construction algorithm. ACM siggraph computer 

graphics. 1987, 21(4), 163-169. 

110. JIN, Jing, et al. An improved marching cubes method for surface 

reconstruction of volume data. In: 2006 6th World Congress on Intelligent 

Control and Automation. IEEE, 2006. p. 10454-10457. 

111. CIRNE, M., V., M. and H., PEDRINI. Marching cubes technique for 

volumetric visualization accelerated with graphics processing 

units. Journal of the Brazilian Computer Society. 2013, 19(3), 223-233. 

112. CUSTODIO, Lis, et al. An extended triangulation to the Marching Cubes 

33 algorithm. Journal of the Brazilian Computer Society. 2019, 25(1), 1-

18. 

113. Curless, B. and M., A., Levoy. A volumetric method for building complex 

models from range images. In: Proceedings of the 23rd Annual 

Conference on Computer Graphics and Interactive Techniques—

SIGGRAPH ’96, New York, NY, USA. 11–15 June 1996; pp. 303–312 

114. Meshlab. Available online: www.meshlab.net (accessed on 5 May 2015). 

115. HANS, Mark G., et al. History of imaging in orthodontics from Broadbent 

to cone-beam computed tomography. American Journal of Orthodontics 

and Dentofacial Orthopedics. 2015, 148(6), 914-921. 

116. ABRAMOVITCH, K., and D., D., RICE. Basic principles of cone beam 

computed tomography. Dental Clinics. 2014, 58(3) 463-484. 



92 

 

117. DE VOS, W., et al. Cone-beam computerized tomography (CBCT) 

imaging of the oral and maxillofacial region: a systematic review of the 

literature. International journal of oral and maxillofacial surgery. 2009, 

38(6), 609-625. 

118. SCARFE, William C., et al. Clinical applications of cone-beam computed 

tomography in dental practice. Journal-Canadian Dental Association. 

2006, 72(1), 75. 

119. ZHANG, G., et al. Bowtie filtration for dedicated cone beam CT of the 

head and neck: a simulation study. The British journal of radiology. 2013, 

86(1028). 

120. Hendee, William R. Cone Beam Computed Tomography. Taylor & 

Francis Group, 2014. 

121. MIRACLE, A., C., and S., K., MUKHERJI. Conebeam CT of the head 

and neck, part 1: physical principles. American Journal of 

Neuroradiology. 2009, 30(6), 1088-1095. 

122. i-CAT™ FLX V-SERIES. Available online: https://www.kavo.com/en-

us/imaging-solutions/i-cat-flx-v-series-cone-beam-3d-imaging (accessed 

on 19 September 2019). 

123. WATANABE, H., et al. Modulation transfer function evaluation of cone 

beam computed tomography for dental use with the oversampling 

method. Dentomaxillofacial Radiology. 2010, 39(1), 28-32. 

124. PINEDA, Angel R., et al. Analysis of image noise in 3D cone-beam CT: 

spatial and Fourier domain approaches under conditions of varying 

stationarity. Medical Imaging 2008: Physics of Medical Imaging. 2008, 

6913, 69131Q. 

125. MARTIN, C., J., et al. Balancing patient dose and image quality. Applied 

radiation and isotopes. 1999, 50(1), 1-19. 

126. FARMAN, Allan G. ALARA still applies. Oral Surgery, Oral Medicine, 

Oral Pathology, Oral Radiology and Endodontology. 2005, 4(100), 395-

397. 

127. LUDLOW, J. B., et al. Effective dose of dental CBCT—a meta analysis 

of published data and additional data for nine CBCT 

units. Dentomaxillofacial Radiology. 2015, 44(1) 20140197. 

128. NARDI, Cosimo, et al. Head and neck effective dose and quantitative 

assessment of image quality: a study to compare cone beam CT and 

multislice spiral CT. Dentomaxillofacial Radiology. 2017, 46(7), 

20170030. 

129. MEN, K., and J., DAI. A Projection Quality-Driven Tube Current 

Modulation Method in Cone-Beam CT for IGRT: Proof of 

Concept. Technology in cancer research & treatment. 2017, 16(6), 1179-

1186. 

130. PAUWELS, Ruben, et al. A pragmatic approach to determine the optimal 

kVp in cone beam CT: balancing contrast-to-noise ratio and radiation 

dose. Dentomaxillofacial Radiology. 2014, 43(5), 20140059. 

https://www.kavo.com/en-us/imaging-solutions/i-cat-flx-v-series-cone-beam-3d-imaging
https://www.kavo.com/en-us/imaging-solutions/i-cat-flx-v-series-cone-beam-3d-imaging


 93 

 

131. ALAWAJI, Yasmine, et al. Optimization of cone beam computed 

tomography image quality in implant dentistry. Clinical and Experimental 

Dental Research. 2018, 4(6), 268-278. 

132. FELDKAMP, Lee A., et al. Practical cone-beam algorithm. Josa a, 1984, 

1(6), 612-619. 

133. MIAO, Hui, et al. Implementation of FDK reconstruction algorithm in 

cone-beam CT based on the 3D Shepp-Logan model. In: 2009 2nd 

International Conference on Biomedical Engineering and Informatics. 

IEEE, 2009. p. 1-5. 

134. MOLTENI, Roberto. Prospects and challenges of rendering tissue density 

in Hounsfield units for cone beam computed tomography. Oral surgery, 

oral medicine, oral pathology and oral radiology. 2013, 116(1), 105-119. 

135. MISCH, Carl E. Contemporary implant dentistry. Implant Dentistry. 

1999, 8(1), 90. 

136. NORTON, M., R., and C., GAMBLE. Bone classification: an objective 

scale of bone density using the computerized tomography scan. Clinical 

oral implants research. 2001, 12(1), 79-84. 

137. NAITOH, Munetaka, et al. Measurement of mandibles with microfocus x-

ray computerized tomography and compact computerized tomography for 

dental use. International Journal of Oral & Maxillofacial Implants. 2004, 

19(2), 239-246. 

138. NAITOH, Munetaka, et al. Evaluation of voxel values in mandibular 

cancellous bone: relationship between cone‐beam computed tomography 

and multislice helical computed tomography. Clinical oral implants 

research. 2009, 20(5), 503-506. 

139. ARANYARACHKUL, Prasit, et al. Bone density assessments of dental 

implant sites: 2. Quantitative cone-beam computerized 

tomography. International Journal of Oral & Maxillofacial Implants. 

2005, 20(3), 416-424. 

140. LIANG, Xin, et al. A comparative evaluation of cone beam computed 

tomography (CBCT) and multi-slice CT (MSCT). Part II: On 3D model 

accuracy. European journal of radiology. 2010, 75(2), 270-274. 

141. SILVA, Isabela Maria de Carvalho Crusoé, et al. Bone density: 

comparative evaluation of Hounsfield units in multislice and cone-beam 

computed tomography. Brazilian oral research. 2012, 26(6), 550-556. 

142. CBCT device: i-CAT™ FLX V17. Access through link:   

https://www.kavo.com/en-us/imaging-solutions/i-cat-flx-v-series-cone-

beam-3d-imaging. 

143. PAUWELS, Ruben, et al. Technical aspects of dental CBCT: state of the 

art. Dentomaxillofacial Radiology, 2015, 44.1: 20140224. 

144. PARINYACHAIPHUN, Sikkared, et al. Considerations for placement of 

mandibular buccal shelf orthodontic anchoring screw in Class III 

hyperdivergent and normodivergent subjects–A cone beam computed 

tomography study. Orthodontic Waves. 2018, 77(1), 44-56. 

https://www.kavo.com/en-us/imaging-solutions/i-cat-flx-v-series-cone-beam-3d-imaging
https://www.kavo.com/en-us/imaging-solutions/i-cat-flx-v-series-cone-beam-3d-imaging


94 

 

145. Mitutyo, CRYSTA-APEX S SE. Access through link: 

https://www.mitutoyo.com/wp-

content/uploads/2013/01/2097_CRYSTA_ApexS.pdf (p. 1). 

146. RYNIEWICZ, Wojciechand, et al. Geometrical parameters of the 

mandible in 3D CBCT imaging. Biocybernetics and Biomedical 

Engineering. 2019, 39(2), 301-311. 

147. Creaform. Portable 3D optical scanner: HandySCAN 700. Access through 

link:   

https://www.creaform3d.com/sites/default/files/assets/brochures/files/han

dyscan3d_brochure_en_hq_21032017_2.pdf. 

148. LOW, Kok-Lim. Linear least-squares optimization for point-to-plane icp 

surface registration. Chapel Hill, University of North Carolina. 2004, 

4(10), 1-3. 

149. Geomagic Control X, 3D Systems, USA, Version 2018.1.1. 

150. VAITIEKŪNAS, Mantas, et al. Automatic Method for Bone 

Segmentation in Cone Beam Computed Tomography Data Set. Applied 

Sciences. 2020, 10(1), 236.  

151. Meshlab Software. Available online: www.meshlab.net (accessed on 5 

May 2019). 

152. CURLESS, B., and M., LEVOY. A volumetric method for building 

complex models from range images. In: Proceedings of the 23rd annual 

conference on Computer graphics and interactive techniques. 1996. p. 

303-312. 

153. FOURIE, Zacharias, et al. Segmentation process significantly influences 

the accuracy of 3D surface models derived from cone beam computed 

tomography. European journal of radiology. 2012, 81(4), 524-530. 

154. http://www.itksnap.org/ 

155. KOO, T., K. and M., Y., LI. A guideline of selecting and reporting 

intraclass correlation coefficients for reliability research. Journal of 

chiropractic medicine. 2016, 15(2), 155-163. 

156. DICE, Lee R. Measures of the amount of ecologic association between 

species. Ecology. 1945, 26(3), 297-302. 

157. HOSSEINI, Mohammad‐Parsa, et al. Comparative performance 

evaluation of automated segmentation methods of hippocampus from 

magnetic resonance images of temporal lobe epilepsy patients. Medical 

physics. 2016, 43(1), 538-553. 

158. NICOLIELO, Laura Ferreira Pinheiro, et al. Validation of a novel 

imaging approach using multi-slice CT and cone-beam CT to follow-up 

on condylar remodeling after bimaxillary surgery. International Journal of 

Oral Science. 2017, 9(3), 139-144. 

159. KALENDER, Willi A., et al. The European Spine Phantom—a tool for 

standardization and quality control in spinal bone mineral measurements 

by DXA and QCT. European journal of radiology. 1995, 20(2), 83-92. 

https://www.creaform3d.com/sites/default/files/assets/brochures/files/handyscan3d_brochure_en_hq_21032017_2.pdf
https://www.creaform3d.com/sites/default/files/assets/brochures/files/handyscan3d_brochure_en_hq_21032017_2.pdf
http://www.itksnap.org/


 95 

 

160. PREVRHAL, Sven, et al. Accuracy limits for the determination of 

cortical width and density: the influence of object size and CT imaging 

parameters. Physics in Medicine & Biology. 1999, 44(3), 751. 

161. KANG, Yanet, et al. A new accurate and precise 3-D segmentation 

method for skeletal structures in volumetric CT data. IEEE transactions 

on medical imaging. 2003, 22(5), 586-598. 

162. MARMULLA, R., et al. Geometric accuracy of the NewTom 9000 cone 

beam CT. Dentomaxillofacial Radiology. 2005, 34(1), 28-31. 

163. SHOKRI, Abbas, et al. Effect of exposure parameters of cone beam 

computed tomography on metal artifact reduction around the dental 

implants in various bone densities. BMC medical imaging. 2019, 19(1), 

34. 

164. SCARFE, William C., et al. Clinical applications of cone-beam computed 

tomography in dental practice. Journal-Canadian Dental Association. 

2006, 72(1), 75-80. 

165. CHANG, Yu-Bing, et al. 3D segmentation of maxilla in cone-beam 

computed tomography imaging using base invariant wavelet active shape 

model on customized two-manifold topology. Journal of X-ray science 

and technology. 2013, 21(2), 251-282. 

166. XI, Tong, et al. A novel region-growing based semi-automatic 

segmentation protocol for three-dimensional condylar reconstruction 

using cone beam computed tomography (CBCT). PloS One. 2014, 9(11), 

e111126. 

167. DESCOTEAUX, Maxime, et al. Bone enhancement filtering: application 

to sinus bone segmentation and simulation of pituitary surgery. Computer 

aided surgery. 2006, 11(5), 247-255. 

168. CHUANG, Ying Ji, et al. A novel registration-based semi-automatic 

mandible segmentation pipeline using computed tomography images to 

study mandibular development. Journal of computer assisted tomography. 

2018, 42(2), 306-316. 

169. WALLNER, Jürgen, et al. A review on multiplatform evaluations of 

semi-automatic open-source based image segmentation for cranio-

maxillofacial surgery. Computer methods and programs in biomedicine. 

2019, 182 (2019): 105102. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SL344. 2021-06-07, 12 leidyb. apsk. l. Tiražas 12 egz. Užsakymas 151. 

Išleido Kauno technologijos universitetas, K. Donelaiþio g. 73, 44249 Kaunas 

Spausdino leidyklos „Technologija“ spaustuvơ, Studentǐ g. 54, 51424 Kaunas 


