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a b s t r a c t 

The unpredictability in chaotic scattering problems is a fundamental topic in physics that has been stud- 

ied either in purely conservative systems or in the presence of weak perturbations. In many systems noise 

plays an important role in the dynamical behavior and it models their internal irregularities or their cou- 

pling with the environment. In these situations the unpredictability is affected by both the chaotic dy- 

namics and the stochastic fluctuations. In the presence of noise two trajectories with the same initial 

condition can evolve in different ways and converge to a different asymptotic behavior. For this reason, 

even the exact knowledge of the initial conditions does not necessarily lead to the predictability of the 

final state of the system. Hence, the noise can be considered as an important source of unpredictability 

that cannot be fully understood using the conventional methods of nonlinear dynamics, such as the exit 

basins and the uncertainty exponent. By adopting a probabilistic point of view, we develop the concepts 

of probability basin, uncertainty basin and noise-sensitivity exponent, that allow us to carry out both a 

quantitative and qualitative analysis of the unpredictability on noisy chaotic scattering problems. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Unpredictability is a fundamental topic in nonlinear science, 

nd it is a consequence of the sensitive dependence to initial 

onditions, inherent to chaotic systems. However, there are sev- 

ral ways to understand unpredictability, and for each of them 

any concepts, methods and tools have been developed. The un- 

redictability can be defined as the difficulty to predict the evolu- 

ion of the trajectories. With this point of view, the expansion en- 

ropy [1] , the Kolmogorov–Sinai entropy [2,3] , the topological en- 

ropy [4] , and other measures have been developed. Nevertheless, 

n certain physical situations such as chaotic scattering problems 

5] , we are interested in the asymptotic behavior rather than the 

volution of the trajectories. In this case, the unpredictability is 

nderstood as the difficulty to predict the final state of a trajec- 

ory that starts with a particular initial condition. The asymptotic 

ehavior can be a fixed point or a chaotic attractor in dissipative 

ystems, a leak in chaotic Hamiltonian maps or an opening in the 

otential in open Hamiltonian systems. The most common tools to 

nalyze the unpredictability in this kind of systems are the basins 
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f attraction [6] and the exit basins [7] . A basin of attraction of 

 dissipative system is defined as the set of initial conditions that 

re attracted to a certain attractor. On the other hand, an exit basin 

f a Hamiltonian system is the set of initial conditions that escape 

hrough a particular exit of the system. When two different exits 

or attractors) coexist, two basins appear, separated by a smooth 

r a fractal boundary. The knowledge of the structure of the basin 

oundary, together with other characteristics of the basins, allows 

o understand and quantify the unpredictability of the system. For 

his purpose, the uncertainty exponent [8] and the basin entropy 

9] are some of the most powerful tools when working on funda- 

ental aspects of physical systems. On the other hand, in the case 

f applied physics and some fields of engineering, many methods 

o characterize the dynamical integrity [10] of the basins of attrac- 

ion have been developed. Some examples are the anisometric lo- 

al integrity measure (ALIM) [11] , the integrity factor (IF) [12] , and 

he local integrity measure (LIM) [13] . 

Recently, much work has been done on the unpredictability 

f chaotic scattering. In particular, current research has shifted 

he focus from purely conservative systems to the effects of rel- 

tivistic corrections [14] , small perturbations as dissipation [15] , 

nd periodic forcing [16,17] . However, the noise is ubiquitous in 

ature, so that important lines of research have arisen to eluci- 

ate the noise effects in chaotic scattering [18–22] . Accordingly, in 

his manuscript we carry on a research on noisy chaotic scatter- 
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Fig. 1. Exit basins of the Hénon–Heiles system in physical space with energy (a) E = 0 . 25 and (b) E = 0 . 45 . The colors red, green and blue refer to initial conditions leading 

to the three exits of the potential: Exit 1 ( y → ∞ ), Exit 2 ( x, y → −∞ ) and Exit 3 ( x → ∞ , y → −∞ ). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 2. Exit basins of the four-hill system in the physical space with energy (a) E = 0 . 01 and (b) E = 0 . 10 . The colors green, yellow, blue and red refer to initial conditions 

leading to the four exits of the potential: Exit 1 ( y → ∞ ), Exit 2 ( x → −∞ ), Exit 3 ( y → −∞ ) and Exit 4 ( x → ∞ ). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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ng, mainly focusing our attention on developing numerical and 

heoretical techniques that allow to characterize the final state 

ensitivity. 

Our research arises from the observation that some of the tools 

nd methods used to study unpredictability in chaotic scattering 

re useless in the presence of stochastic fluctuations. As good ex- 

mples, we can mention the exit basins and the uncertainty expo- 

ent. These tools are based on the high sensitivity of the asymp- 

otic behavior to initial conditions or parameters. However, if we 

onsider a small amount of noise the system is not deterministic 

nymore and the situation changes drastically. In this scenario, two 

xactly identical initial conditions can evolve in a different way 

nd converge to a different asymptotic state. Hence, in presence 

f noise we are not interested anymore in the neighborhood of the 
nitial condition but in the initial condition itself. [

2 
Next, we develop some tools and numerical methods that can 

elp to understand and quantify the effects of noise on the unpre- 

ictability of chaotic scattering systems. With this goal in mind, 

nd without loss of generality, we have used two paradigmatic 

pen Hamiltonian systems. Nevertheless, we expect that the main 

esults could be general in chaotic scattering problems in which 

he noise models the effect of internal irregularities or the cou- 

ling of the system with the environment. We presume poten- 

ial applications to several fields of physics such as celestial me- 

hanics [14,23] and plasma physics [24,25] , among others. In par- 

icular, both the exit basins and the noise play an important 

ole in the magnetic behavior in tokamaks [26–28] . Other pos- 

ible applications include chaotic scattering problems in different 

elds of science, such as medicine [29] , biology [30] or chemistry 

31,32] . 
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Fig. 3. Escape dynamics of the noisy Hénon–Heiles system with E = 0 . 25 and ξ = 10 −5 , showing (a) three trajectories in the physical space launched from the same initial 

conditions escaping through different exits, and (b) escape time distribution of 100 launchings with the same initial condition. 
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The structure of this paper is as follows. In Section 2 , we de-

cribe the models of this work, the Hénon-Heiles system and the 

our-hill potential, both in presence of a source of additive uncorre- 

ated Gaussian noise. The description of the concepts and methods 

o compute the probability basin and the uncertainty basin is car- 

ied out in Section 3 and Section 4 , respectively. In the latter, we

lso focus our attention on the relation between the structure of 

he uncertainty basin and the stable manifold of the chaotic sad- 

le. In Section 5 , we develop the concept of noise-sensitivity expo- 

ent as a tool to quantify the final state sensitivity to noise. Finally, 

n Section 6 , we present the main conclusions of this work. 

. Description of the models 

One of the models that we have used to illustrate the ideas and 

ethods of this manuscript is the Hénon–Heiles system [33] . This 

amiltonian system appeared for the first time in 1964 as a model 

f a galactic potential. The Hamiltonian is characterized by a non- 

inear axisymmetric potential and is given by 

 = 

1 

2 

( ̇ x 2 + 

˙ y 2 ) + 

1 

2 

(x 2 + y 2 ) + x 2 y − 1 

3 

y 3 , (1)

here x and y denote the space coordinates, and ˙ x and ˙ y are the 

he momentum coordinates. 

The system has been extensively studied due to the fractal exit 

asins and the wide variety of dynamical behaviors existing for 

ifferent values of the energy [34,35] . To visualize the system in 

he context of the unpredictability analysis, in Fig. 1 we show 

wo exit basins for different values of the energy E = 0 . 25 and

 = 0 . 45 . When the energy of the system is increased, the frac-

al basin boundaries become thinner and less fractal, with a con- 

equent reduction on the unpredictability. This decreasing can be 

uantified by using both the uncertainty exponent and the basin 

ntropy. 

For the purposes of this research, we have included in the equa- 

ions of motion a source of additive uncorrelated Gaussian noise, 

o the equations of motion become [22] 

˙ p = −x − 2 xy + 

√ 

2 ξηx (t) 

˙ 
 = −y − x 2 + y 2 + 

√ 

2 ξηy (t) , 
(2) 
3 
here ξ is the intensity of the noise and ηx (t) , ηy (t) are white 

oise processes with variance σ 2 = 2 ξ and mean μ = 0 . 

For comparison purposes, we have also used the four-hill sys- 

em [36,37] , whose potential consists of four hills located at 

x, y ) = (±1 , ±1) and its Hamiltonian is given by: 

 = 

1 

2 

( ̇ x 2 + 

˙ y 2 ) + x 2 y 2 e −(x 2 + y 2 ) . (3) 

Under the same considerations that we have mentioned in the 

ase of the Hénon–Heiles, the equations of motion in presence of 

oise read 

˙ p = 2 xy 2 (x 2 − 1) −(x 2 + y 2 ) + 

√ 

2 ξηx (t) 

˙ 
 = 2 x 2 y (y 2 − 1) −(x 2 + y 2 ) + 

√ 

2 ξηy (t) . 
(4) 

To visualize the system, we represent the exit basins for differ- 

nt energies E = 0 . 01 and E = 0 . 1 in Fig. 2 . In the low energy case,

he basin boundary occupies an important part of the phase space. 

hile in the high energy case the basin boundary is thinner, let- 

ing space to extensive safe regions of high predictability. If we in- 

rease even more the energy until E = 1 /e 2 , the trajectories evolve

n the top of the hills and the scattering becomes non-chaotic. 

We have solved the stochastic differential equations for the 

énon–Heiles and the four-hill system by using the stochastic 

eun method [38] , as was previously used in Refs. [22,39] . In both

ystems, the numerical methods gave stable and convergent so- 

utions. To ensure the effectiveness of the method, we have also 

ompared the results by using the numerical schemes of the Euler–

aruyama method and the stochastic fourth-order Runge-Kutta 

ethod. 

. Probability basins 

Perhaps the most obvious and at the same time interesting ef- 

ect of noise on the escape dynamics is that identical initial condi- 

ions can escape through different exits and spend a different time 

n the scattering region. To illustrate this, we represent three tra- 

ectories with the same initial condition escaping through differ- 

nt exits of the potential of the Hénon–Heiles system in Fig. 3 (a). 

n addition, the escape times obtained for different launchings of 

he same initial condition are represented in Fig. 3 (b). This figure 

eminds us the very usual scattering function. However, here no 
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Fig. 4. Color map showing the probability basin for the Exit 1 of the Hénon–Heiles system with energy E = 0 . 25 , and different noise intensities (a) ξ = 10 −10 and (b) 

ξ = 10 −6 . Panels (c) and (d) are magnifications of the probability basin of panels (a) and (b), respectively. The yellow color indicates maximum probability of finding the Exit 

1, while dark blue implies zero probability. Intermediate colors refer to intermediate probabilities, as shown in the color bar. To generate these figures, we have computed 

100 times the exit of each initial condition in a 400 × 400 grid and we have represented the probability of the Exit 1. 
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oordinate is varied and the apparently disordered escape times 

re due to the effects of the noise. Even with a perfectly known 

nitial condition, we cannot say by which exit the particle will es- 

ape and we can only establish that the trajectory will remain in 

he scattering region during a certain range of time T ∈ [19 , 116] . 

In this situation, where the main characteristics of the scatter- 

ng process (asymptotic behavior and escape time) may change in 

ifferent simulations, it is necessary to adopt a probabilistic ap- 

roach in order to understand the escape dynamics. Hence, the es- 

ape of a trajectory should be understood as a probability of es- 

ape. Additionally, the escape times of an initial condition should 

e analyzed in terms of the average and the variance of the indi- 

idual escape times. Regarding unpredictability, one of the most 

seful portraits is the structure of the exit basins. However, in 

resence of noise this representation lacks meaning since for a 

iven initial condition, the exit is not uniquely defined. So, in noisy 

ystems we do not have a unique exit basin representation, we 

ight have a different one for each different simulation we carry 

ut. As it has been reported in Refs. [22,39] , the exit basins appear
4 
meared or blurred, and the basin boundary becomes shaded off

ue to the effects of noise. Hence, a deeper understanding of the 

ystem is not possible by using the exit basins. Nevertheless, we 

an construct a similar representation that we call probability basin , 

n which every initial condition in the grid does not have an asso- 

iated asymptotic behavior, but a probability of escaping through 

 particular exit. Consequently, we will have as many probability 

asins as there are exits in the system. For the computation of the 

robability basins, we start fixing a value of the noise intensity and 

stablishing a grid of P initial conditions in the phase space region 

hat we want to analyze. Then, we compute N times the trajectory 

f the very same initial condition and we detect the exit through 

hich they escape. Once we know the exits of all N trajectories, we 

an establish the probability of each exit. By repeating this pro- 

edure for all P initial conditions we will obtain the probability 

asins. 

To illustrate the above, in Fig. 4 we use a color code map to 

epresent the probability basin of the Exit 1 of the Hénon-Heiles 

ystem with energy E = 0 . 25 and different values of the noise 
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Fig. 5. Evolution of the segment x = 0 of the probability basin of the Exit 1 of the 

Hénon–Heiles system with increasing noise. The energy of the system is E = 0 . 25 , 

while the noise intensity is varied from ξ = 10 −10 to ξ = 10 −3 . The color code is as 

described in the caption of Fig. 4 . The base of the log is 10. 
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ntensity. We do not show the probability basins of the Exits 2 and 

 because, due to the symmetry of the basin, they are a simply 

 π/ 3 rotation of the probability basin of the Exit 1. In panel (a )

nd (c) the almost negligible noise intensity ξ = 10 −10 generates 

ainly extreme values in the probability, indicating an almost de- 

erministic behavior. However, even a very small amount of noise 

f intensity ξ = 10 −6 can generate an important source of un- 

ertainty in the vicinity of the deterministic basin boundary. The 

ighly predictable regions become uncertain and the probabilis- 

ic nature of the escapes manifests along an important part of the 

hysical space. Hence, we can conclude that the effects of noise 

ake even more difficult the prediction of the final state of the 

ystem. 

As we increase the noise intensity, the uncertainty and the blur- 

ing of the probability basins also increase. To illustrate this, we 

epresent in Fig. 5 the evolution of the segment x = 0 of the prob-

bility basin of the Exit 1 when the noise intensity varies from 

0 −10 to 10 −3 . We have not considered higher noise intensities be- 

ause they imply the dominance of the stochastic behavior and the 

rajectories are simply random walks. In the previous figure, we 

an observe how the regions where particles surely escape through 

xit 1 decrease in size as noise increases. For ξ = 10 −3 the only re-

ion where this happens is the one near to y = 0 , which is formed

y initial conditions above the Lyapunov orbits [40] that do not 

ake place in the chaotic scattering process. 

. Uncertainty basin 

The probability basin representation is a useful tool to visual- 

ze the probability distribution of the exits along the phase space. 

evertheless, in many contexts we are not specifically interested 

n the probability, but on the unpredictability of the escape. For 

his reason, in deterministic chaotic scattering the boundary of the 

xit basins plays a central role when analyzing and quantifying the 

npredictability of a system. It was not in vain that a large num- 

er of tools and concepts have been developed just to understand 

he basin boundary and its sometimes rich fractal structure. How- 

ver, in the case of noisy chaotic scattering the basin boundary 

s not well defined since the set of points that define it changes 

or different simulations. For this reason it is necessary to change 
5 
gain our point of view and understand the uncertain initial con- 

itions as the set of initial conditions that can change for different 

aunchings. We call this set uncertainty basin , U B . We recall again 

hat no uncertainty in the initial condition is considered here and 

he source of uncertainty is all due to the influence of the noise on 

he chaotic dynamics. In order to construct the uncertainty basin, 

e follow a similar method as in the case of the probability basins. 

irst, we define a grid of P initial conditions in all the phase space 

nd we launch each of them N times, labeling an initial condi- 

ion as uncertain if the exit through which it escapes changes at 

east in one simulation. To illustrate the result, we simply asso- 

iate a different color to the certain and the uncertain initial con- 

itions. In Fig. 6 we show in yellow the uncertainty basin of the 

énon–Heiles with energy E = 0 . 25 and different noise intensities 

a) ξ = 10 −10 , (b) ξ = 10 −8 , (c) ξ = 10 −6 and (d) ξ = 10 −5 . It can be

bserved at naked eye that the uncertainty basin is located in the 

icinity of the stable manifold of the chaotic saddle ( W s ) (i.e. the

oundary of the exit basins) and grows with increasing noise. This 

eans that some initial conditions that were predictable in the de- 

erministic system due to the large distance to the basin boundary 

ecome uncertain due to the effects of noise. If we consider an ini- 

ial condition sufficiently close to the stable manifold of the chaotic 

addle, a small perturbation can move it from one basin to another, 

o it is intuitive that the uncertainty basin lies close to W s . More-

ver, we can establish that 

lim 

→ 0 
U B = W s , (5) 

hich constitutes an accurate method to determine the structure 

f W s . 

The uncertainty basin is a faithful portrait of the unpredictabil- 

ty of the system in the presence of a particular noise intensity. 

y simply computing and exploring the uncertainty basin, we can 

onclude which regions are uncertain and which ones remain pre- 

ictable under the effects of noise. 

Even if the uncertainty basin is a set that emerges from the 

ne structure of the stable manifold of the chaotic saddle, as we 

ncrease the noise its once rich and complex structure becomes 

lurred, with the consequently lost of fractality. All those “threads”

hat make up the boundary widen in the uncertainty basin and 

nd up coming together. As a consequence, they define extensive 

egions of smooth geometry. This result is shown in Fig. 7 , where 

everal magnifications on the exit basin and the uncertainty basin 

re represented. Meanwhile, the geometry of the basin boundary 

f the exit basin is not simplified when magnified. As a matter of 

act, the smooth nature of the uncertainty basin manifest on a fi- 

ite scale. One of the most significant implications of the absence 

f fractality in the uncertainty basin is that its size is independent 

f its resolution, which allows us to establish an absolute fraction 

f uncertain initial conditions. 

. Quantifying the final state sensitivity 

In the previous sections we have introduced the concepts of 

robability basin and uncertainty basin, in order to give a graphic 

nd qualitative understanding of the unpredictability on noisy 

haotic scattering. However, in many physical problems we need a 

uantitative measure of the unpredictability in order to analyze the 

ffect of a parameter or to compare different systems. In particu- 

ar, even if two systems have the same fraction of uncertain initial 

onditions for a particular value of the noise, we do not have any 

uarantee that both have the same sensitivity to the noise, i.e., the 

raction of uncertain initial conditions will increase in the same 

mount when the noise intensity increases. From the perspective 

f the prediction of the system, it is preferable that the uncertainty 

rows slowly with increasing noise. In this section, we develop a 

ethod to quantify the final state sensitivity to noise. 
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Fig. 6. Uncertainty basins of the Hénon–Heiles system with energy E = 0 . 25 , and different noise intensities (a) ξ = 10 −5 , (b) ξ = 10 −6 , (c) ξ = 10 −8 and (d) ξ = 10 −10 . 

To generate these figures we have computed the exit of each initial condition 100 times and labeled the initial condition as certain (black) or uncertain (yellow). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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In deterministic systems one of the most common and useful 

easures is the uncertainty exponent, that can be obtained by 

sing the uncertainty algorithm [8] . The method consists of 

aunching several initial conditions under some uncertainty δ. 

hen, we say that an initial condition is uncertain under an un- 

ertainty δ if the asymptotic behavior is affected by the error. The 

raction of uncertain initial conditions is then related to δ through 

 power law 

f u (δ) ∼ δα, (6) 

here α is the uncertainty exponent. 

In noisy chaotic scattering system we have two sources of un- 

ertainty: the error in the initial condition and the noise. For this 
6 
eason, the fraction of uncertain initial conditions, f (δ, ξ ) , does not 

atisfy f (0 , ξ ) = 0 since some initial conditions are uncertain even 

ithout considering an error. These initial conditions are those 

hat change the exit for different launchings. These initial condi- 

ions will be uncertain ∀ δ, so they do not increase or decrease 

hen changing δ. This makes Eq. (6) invalid in noisy systems. In 

act, since the uncertainty exponent is defined in the limit δ → 0 , 

he fraction of uncertain initial conditions for a fixed and not neg- 

igible noise intensity will always be f (δ, ξ ) = f (ξ ) = k , where k

s a constant. This implies that α = 0 in noisy chaotic scattering 

ystems. 

Here, we are interested in the effects of noise, so we consider 

= 0 and we set that an initial condition is uncertain if it can 
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Fig. 7. (a,b,c) Magnifications in the exit basins of the Hénon–Heiles in the physical space with energy E = 0 . 25 (See Fig. 1 ) and (d,e,f) same regions but in the uncertainty 

basin with noise intensity ξ = 10 −6 (See Fig. 6 (c)). It is clear that the uncertainty basin grows from the boundary of the exit basin, connecting different regions and generating 

a smooth geometry. 

e

a

l

w

t

l

s  

β
t

h

t

a

t

p

t

s

o  

h

v

l

u

v

s

l

w

u

r  

c  

T

i  

t  

C

e

n

t

e  

t

F

b  

l

t  

t

E

scape through different exits for different launchings. Under this 

ssumption the fraction of uncertain initial conditions obeys the 

aw 

f u (ξ ) ∼ ξβ, (7) 

here β > 0 is a magnitude that characterizes the intrinsic uncer- 

ainty of the noisy system, and we call it noise-sensitivity exponent . 

As β approaches to zero a reduction in the noise intensity has 

ess effect in decreasing the fraction of uncertain initial conditions, 

o we say that the system has high sensitivity to noise. In the limit

= 0 a reduction in the noise intensity does not decrease the frac- 

ion of uncertain initial conditions at all. On the other hand, for 

igh values of β the fraction of uncertain initial conditions tends 

o zero for low noise intensities and very large noise intensities 

re needed in order to increase the unpredictability. Hence, we say 

hat the system has low sensitivity to the noise. We have com- 

uted the parameter β for several open Hamiltonian systems and 

heir result ranges from 0.05 to 0.5. Furthermore, we have ob- 

erved that extreme values appear only where the basin boundary 

ccupies almost all the phase space ( β < 0 . 05 ) or in basins that

ave a unique smooth boundary ( β > 0 . 5 ). 

In order to obtain β , we begin computing f u (ξ ) for different 

alues of ξ . In particular, for a fixed value of the noise intensity we 

aunch P initial conditions N times, and we compute the fraction of 

ncertain initial conditions. We repeat this procedure for several 
7 
alues of ξ and we proceed to a log − log representation that will 

atisfy 

og 10 f u (ξ ) = β log 10 ξ + C , (8) 

here C is a constant and the slope of the straight line is β . 

The quality of the linear fit turns out very well for all the sim- 

lations that we have carried out (linear correlation coefficient 

 > 0 . 999 ). As an example, we show the resulting linear fit for the

ase of the Hénon–Heiles system with energy E = 0 . 25 in Fig. 8 .

he noise-sensitivity exponent is estimated to be β = 0 . 109 . If we 

ncrease the energy to E = 0 . 45 the result is β = 0 . 2309 , so that

he final state sensitivity due to the noise is higher for E = 0 . 25 .

ertainly, this case can be easily understood due to the big differ- 

nce in the size of the basin boundaries (see Fig. 1 ). 

Another interesting application of the noise-sensitivity expo- 

ent is to compare the sensitivity to the noise for different sys- 

ems. To illustrate this, we have chosen the four-hill system with 

nergies E = 0 . 01 and E = 0 . 1 . The exit basins of the conserva-

ive system for these values of the energy have been shown in 

ig. 2 . In these cases the noise-sensitivity exponent is estimated to 

e β = 0 . 078 ( E = 0 . 01 ) and β = 0 . 2902 ( E = 0 . 1 ). Hence, for the

ower energy value the system is more sensitive to the noise than 

he Hénon–Heiles for E = 0 . 25 , while for the higher energy value

he four-hill system is less sensitive than the Hénon–Heiles with 

 = 0 . 45 . 
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Fig. 8. Logarithm of the fraction of uncertain initial conditions in function of the 

logarithm of the noise intensity of the Hénon–Heiles system with energy E = 0 . 25 . 

The parameter β is estimated to be β = 0 . 109 . To generate this figure, we have 

used 40 different values of the noise intensity. For every noise intensity the fraction 

of uncertain initial conditions has been computed after launching 10 0 , 0 0 0 initial 

conditions (100 times each one). 
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. Conclusions 

In summary, our research reveals that the noise, even if the in- 

ensity is very weak, has important implications on the predictabil- 

ty of chaotic scattering systems. We have shown that in order to 

ave a deeper understanding of the effects of noise, some concepts 

nd tools of nonlinear dynamics and chaos should be revisited. In 

articular, the usual ways to represent the exit basins and to com- 

ute the uncertainty exponent are meaningless in the presence of 

oise. Throughout this work we have adopted a probabilistic point 

f view and developed the concepts and methods to compute the 

robability basin, uncertainty basin and noise-sensitivity exponent. 

nder all these concepts underlies the idea that an initial condi- 

ion is uncertain if it can change its exit for different launchings. 

he probability and uncertainty basins allow a qualitative analysis 

f the probability distribution of the escapes and the structure of 

he uncertain regions, respectively. On the other hand, the noise- 

ensitivity exponent gives a measure to quantify the final state 

ensitivity in presence of noise. This tool can be useful to analyze 

ow the sensitivity to the noise manifests itself for different dy- 

amical systems, as well as to see its behavior when a parameter 

f the system varies. 

We expect that the results shown in this work could be helpful 

n providing new concepts and tools to future research concerning 

haotic scattering problems. 
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