friried applied
b sciences

Article

Extracting SBVR Business Vocabularies from UML Use Case
Models Using M2M Transformations Based on
Drag-and-Drop Actions

Tomas Skersys 1'2*, Paulius Danenas

check for

updates
Citation: Skersys, T.; Danenas, P;
Butleris, R.; Ostreika, A.; Ceponis, J.
Extracting SBVR Business
Vocabularies from UML Use Case
Models Using M2M Transformations
Based on Drag-and-Drop Actions.
Appl. Sci. 2021, 11, 6464. https://
doi.org/10.3390/app11146464

Academic Editors: Eugenio Parra and

Juan Llorens

Received: 3 April 2021
Accepted: 8 July 2021
Published: 13 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 4

, Rimantas Butleris 12, Armantas Ostreika 3 and Jonas Ceponis

Center of Information Systems Design Technologies, Kaunas University of Technology, K. Barsausko Str. 59,
51423 Kaunas, Lithuania; paulius.danenas@ktu.lt (P.D.); rimantas.butleris@ktu.lt (R.B.)

Department of Information Systems, Kaunas University of Technology, Studentu Str. 50,

51368 Kaunas, Lithuania

Department of Multimedia Engineering, Kaunas University of Technology, Studentu Str. 50,

51368 Kaunas, Lithuania; armantas.ostreika@ktu.lt

Department of Computer Sciences, Kaunas University of Technology, Studentu Str. 50,

51368 Kaunas, Lithuania; jonas.ceponis@ktu.lt

Correspondence: tomas.skersys@ktu.lt

Featured Application: The main application of the developed solution lies in the areas of prob-
lem domain analysis and system design where the researched SBVR business vocabularies, UML
use case models, and model-to-model transformation technology are utilized to their full extent.
The presented solution enables one to use our previously developed model-to-model transforma-
tion technology in the course of the specification of business knowledge formally expressed in
SBVR business vocabularies based on UML use case models.

Abstract: In the domain of model-driven system engineering, model-to-model (M2M) transforma-
tions present a very relevant topic because they may provide much-needed automation capabilities to
the whole CASE-supported system development life cycle. Nonetheless, it is observed that through-
out the whole development process M2M transformations are spread unevenly; in this respect, the
phases of Business Modeling and System Analysis are arguably the most underdeveloped ones.
The main novelty and contributions of this paper are the presented set of model-based transforma-
tions for extracting well-structured SBVR business vocabularies from visual UML use case models,
which utilizes M2M transformation technology based on the so-called drag-and-drop actions. The
conducted experiments show that this new development provides the same transformation power
while introducing more flexibility to the model development process as compared to our previously
developed approach for (semi-)automatic extraction of SBVR business vocabularies from UML use
case models.

Keywords: UML use case model; SBVR business vocabulary; model-driven system development;
model-to-model transformation; drag-and-drop action

1. Introduction

While Unified Modeling Language (UML) [1] is the most popular visual language
for the model-driven specification of software systems, the Use Case Diagram stands out
as one of the most frequently used diagrams adopted by UML. IT people use UML use
case models (UCM) and their graphical representations in the form of use case diagrams
(UCD) for the specification and communication of functional requirements of the future
system. However, any IT project involving business individuals will most likely face
difficulties in communicating these requirements among IT and business individuals. This
is because business individuals will more likely prefer communicating their business
needs in natural language (NL) format and will be cautious about any formal visual

Appl. Sci. 2021, 11, 6464. https:/ /doi.org/10.3390/app11146464

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2054-0624
https://orcid.org/0000-0001-5718-3766
https://doi.org/10.3390/app11146464
https://doi.org/10.3390/app11146464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146464
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146464?type=check_update&version=2

Appl. Sci. 2021, 11, 6464

2 0f 23

representations of the business domain knowledge; this includes UML, which is often
comprehended as ‘too technical’. However, the communication of requirements in NL may
potentially come at a cost of increased ambiguity, redundancy, and inconsistency. This
increases the risk of miscommunication among the interested parties and the overall poor
quality of requirements.

One method to deal with this situation is by using formal visual models synchronized
with their representation in well-structured textual specifications based on controlled
natural language. Our approach uses UML UCD as visual means of representing functional
requirements in contrast to OMG’s Semantics of Business Vocabulary and Rules (SBVR) [2],
which was adopted to represent parts of the requirements in a well-structured textual form
as its primary for of representation. SBVR is a standard aimed at specifying any human
knowledge based on natural language expressions. It is comprised of business vocabularies
(BV) and business rules (BR) for which visual representation ‘looks and feels” similar to
natural language. Simultaneously, SBVR is founded upon the formal specification of Meta
Object Facility (MOF) [3] and, therefore, its models are fully interpretable by computers.
Another favorable argument about using natural language-based formalism for expressing
business knowledge is that such an approach enables the reuse of structured knowledge
in every phase of the system development while at the same time aligning itself with
the basic principles of OMG’s Model Driven Architecture (MDA) [4]. Such accumulated
knowledge could then be reused elsewhere, e.g., in other IT projects carried out within the
given organization.

Indeed, the advantages of using formal visual models combined with natural language-
based specifications seem to be quite evident. However, actual system development
projects will likely lack well-structured vocabularies comprised of traceable and manage-
able business concepts, even though the overall relevance of such vocabularies is quite
well perceived [5]. We argue that such a situation is conditioned by the lack of proper
tools supporting the development and management of such vocabularies in IT projects
and beyond. Without proper tools, the development and management of BV will always
require significant time and human effort, which may negatively impact the decision on
whether to use such vocabularies in a project at all.

To ease these efforts, we first developed a solution for extracting SBVR BV and
BR from UML UCM (hereafter, UML UCM — SBVR BV&BR approach) by utilizing a
(semi-) automatic M2M transformation technology [6]. However, while experimenting
with that solution, we observed there was an evident need for more control over the
M2M transformation actions that a user working with those transformations could utilize,
particularly, selecting specific source model concepts and applying different localized
transformations to transform those source model concepts into different target model
concepts based on his expert judgment of the specific situations in the source model. To
overcome this shortcoming, we decided to take advantage of the special kind of M2M
transformation called M2M transformation based on drag-and-drop actions (hereafter, drag-
and-drop transformation or, simply, DnD transformation) [7] by developing a model-based
executable library of DnD transformation rules for the extraction of SBVR BV from UML
UCM. The distinctive feature of such DnD transformation is that it is selectively triggered
by a drag-and-drop action. Here, a drag-and-drop action represents a situation when a user
drags a certain model element from the browser of a source model and drops it onto either
a target diagram or another element’s representation in that diagram to generate a subset
of target model elements (such a transformation is called a partial M2M transformation).

Main contribution and novelty of the results. This paper presents the basic aspects
of the approach for the extraction of SBVR BV from UML UCM (hereafter, UML UCM
— SBVR BV) using model transformations based on drag-and-drop actions. Compared
to our previously developed UML UCM — SBVR BV approach, the presented solution
provides the same model transformation capabilities while simultaneously delivering
more flexibility and control over the M2M transformations, starting with the model-based

Appl. Sci. 2021, 11, 6464

30f23

development of transformations themselves and finishing with the selective execution of
the modeled transformations.

The main conceptual novelty and contribution of this research is the proposed library
of model-based transformation specifications for the UML UCM — SBVR BV approach.
It contains a set of transformation specifications based on transformation rules presented
in [6]. These specifications are based on the metamodel, which was first introduced in [7]
and briefly discussed in this paper as well (Section 3). The developed set of transformations
can be executed in the DnD transformation tool implementation [7]. The developed set of
the UML UCM — SBVR BV transformation specifications provides a transparent (‘white
box’) view of the actual mappings between UML and SBVR metamodels (the latter being
implemented as a UML profile). Moreover, due to the flexibility and universality of the
DnD approach itself, the developed set of model transformations could serve as a reference
point for the development of corresponding transformations between the models expressed
in other modeling notations.

The paper is structured as follows: an overview of the latest relevant research is
presented in Section 2; Section 3 presents an overview of the concepts and definitions
relevant to the research, together with a brief description of the implementation architecture
of the developed approach; in Section 4, the specification of model-based transformation
rules for extracting SBVR BV from UML UCM is presented, which is then followed by the
experiment results in Section 5; the paper concludes with Section 6, where conclusions and
insights for future improvements are drawn.

2. Related Work

It is observed that the public presentation of the research dealing with the integration
and transformation of both UML and SBVR models remains very poor. At this moment, no
published research directly dealing with UML UCM — SBVR BV&BR transformation was
found, except for our previous publications [6,8]. One more study presented results of the
opposite transformation [9]; however, it only covered the basic UML UCM elements, such
as Actor, UseCase, and Association. Despite this gap, there are multiple relevant publications
from the past decade dealing with either visual UML use case models or text-based SBVR
models in the presented M2M transformation approaches.

Exploring the possibilities to extract SBVR business vocabularies and business rules
from other kinds of visual models started soon after the SBVR 1.0 specification was pub-
lished in 2008. The author of [10] was the first to present results on the transformation
of UML/OCL conceptual data models to SBVR specifications. At about the same time,
certain conceptual and engineering results presenting the extraction of SBVR BV&BR from
UML/OCL class models were published in [11]. Both [10,11] proved that M2M transforma-
tion technology could be applied to SBVR models in model-driven systems development
providing practical results. Both approaches represented fully automatic M2M transforma-
tions, which utilized formal UML and SBVR metamodels. Several other papers followed
presenting similar approaches [12-15]. Others published their results on the research of
extracting SBVR BV&BR from BPMN process models [16,17] and the synchronization of
these models [18]. Yet another study introduced an approach for generating UML activity
diagrams from SBVR BR [19]. While OMG SBVR specification [2] already provides map-
ping examples between UML Class models and SBVR BV concepts, other transformations
from SBVR BV and BR to UML have been explored as well, including Use Case models [20]
and OCL constraints in UML models [21]. Process models were also considered as targets
for SBVR transformations [22,23].

In the requirements engineering area, a considerable amount of significant research
was carried out on the junction of use case modeling and the application of NL patterns
that are semantically similar to SBVR specifications. Al-Hashemi et al. [24] presented an
approach for developing UML UCM from natural language-based textual documents. It
utilized a large set of UML concepts resulting in the development of a more comprehensive
UML UCM. Deeptimahanti et al. [25] further explored the possibilities of the extraction

Appl. Sci. 2021, 11, 6464

40f23

of UCM from the documents written in unstructured natural language. It was argued
that the developed solution was capable of generating use cases from an unstructured
text by properly structuring the text and then identifying the most meaningful items
residing in those structures. The main steps of the approach included the identification of
roles and the determination of use cases for each identified role. Roles were presented as
subjects in sentences (identified as nouns) and use cases were presented as predicates (verb
phrases) following the identified subjects; prepositions played the role of identifiers for
relationships. From the point of view of SBVR, such an approach provides means similar to
the identification of general concepts and verb concepts. The authors of [26] investigated
possibilities to automate software requirement elicitation and specification and proposed a
pipeline to extract structured requirements in the SBVR format. Furthermore, [27] used
SBVR as a mediator representation in the process of transforming business requirements in
NL into executable models.

Several other works dealt with the acquisition of conceptual models from the require-
ments specified in NL [28,29]. These papers provided relevant insights on using patterns
and rules for defining use case model concepts by using text-based structures. In fact, it
proved to be beneficial to transform requirements (written in NL) to SBVR, which helped to
reduce ambiguity and obtain specifications that could be later processed by computers [30],
as well as acquire business rules from regulatory texts [31].

Interesting results were presented in [32], where the authors attempted to relate (syn-
chronize) NL specifications with visual UML models. The main idea was to recognize
changes and propagate those changes throughout the whole model. The presented ap-
proach dealt with UML Class, State Machine, and Activity diagrams. The authors of that
paper also argued that such an approach could provide different viewpoints to the problem
domain, while at the same time enhancing the communication and quality assurance in
various system development activities. Object Process Methodology (OPM) provides its
own controlled natural language to ensure synchronization between visual artifacts and
their textual representations [33]; however, it does not provide any compatibility with
UML-based modeling,.

For a more extensive overview of the related work, we refer to [6] which provides an
exploration of a more comprehensive set of published research surpassing the threshold of
the last decade.

3. Concepts and Definitions

In this section, the following aspects are briefly introduced: relevant concepts of SBVR
standard; the developed UML profiles to support the developed DnD transformation
metamodel underlying this research; a set of text processing operators relevant to the
extraction of SBVR business vocabulary concepts from UML use case models.

3.1. SBVR Business Vocabulary

While the UML use case diagrams do not need many introductions to the IT commu-
nity, our personal experience and observations show that the case with SBVR is very much
different; that is, SBVR still requires an introduction to the audience.

SBVR facilitates the sharing of knowledge between various interested parties within
IT projects and beyond [2]. To achieve this, SBVR provides means to formalize knowledge
using natural language-based structures or other preferred forms of representation while
constrained by formal logic. Together with UML, BPMN, and other OMG’s visual mod-
eling standards, SBVR is built upon OMG’s Meta-Object Facility (MOF) [3] and provides
interchange capabilities, which makes SBVR a part of the OMG’s MDA.

Next, we will introduce the core elements of SBVR essential to the research (Figure 1):

- A noun concept is a generalization of a general concept, an individual concept, and a role
(the latter is irrelevant in this paper). A general concept is a noun concept classifying
things based on their common properties. An individual concept is a noun concept
that corresponds to only one object (thing).

Appl. Sci. 2021, 11, 6464

50f23

- A werb concept defines some kind of relationship between two or more noun concepts
or a characteristic of a noun concept. A verb concept has specializations: association,
property association (also: is-property-of verb concept), partitive verb concept (also:
part-whole verb concept), and characteristic (also: unary verb concept).

Further categorization of SBVR concepts comprising an SBVR BV is irrelevant to the
research presented in this paper and therefore will be elaborated no further.

SBVR standard also defines a business rule (BR). It should be noted that even though
business rules do not comprise SBVR business vocabularies, they are an essential part of
the overall SBVR model and, therefore, we believe it is important to define them while
introducing SBVR as well. While SBVR defines a business rule as a ‘rule that is under
business jurisdiction’, we prefer a more comprehensive definition presented in [34]. In that
study, a business rule is defined as a part of the whole business model of an organization
defining or constraining certain business aspects in certain situations or contexts and
ensuring the achievement of one or more business goals.

SBVR model is usually comprised of one or more business vocabulary and business
rulesets. The vocabulary is organized as a set of entries representing noun concepts and
verb concepts relevant to some domain in a glossary-like manner. An entry begins with a
primary presentation denoting the concept’s name; each concept may be defined in more
detail using non-mandatory fields, e.g., Definition, Concept Type, Synonym, Note, and
Example. The development of SBVR models is based on the business rules’ ‘mantra’ [35].
In SBVR terminology, it states that business rules are based on verb concepts and verb
concepts are based on noun concepts.

wstereotypes

concept

[Element]
T
|]

ustereotypes wstereotypes
noun concept verb concept

[Element] [Classifier]

T T
[| | | [
wstereotypes astereotyper astereotypes astereotypes astereotypes
role individual noun concept general concept association partitive verb concept
[Class, Property] [InstanceSpecification] [Class] [Association] [Association]
p categorization scheme [0..%] T
categorization type [0..%]
«stereotypen objectified verb concept [0..7] «stereotypes «stereotypex
verb concept role ; property association characteristic
[Class, Property] ﬁ— [A==sociation] [Association, Class, Property]
xstersotypex
concept type
[Class]

Figure 1. Fragment of UML profile for SBVR Business Vocabulary [36].

In SBVR, the following types of formatting are used to represent SBVR elements in
controlled natural language (English, Lithuanian, or any other language of one’s choice):

- The’term’ formatting represents a general concept, e.g., ‘customer” and ‘personal data’.
General concepts are presented in singular form using lower case letters.

- The ‘Name’ formatting represents an individual concept, e.g., ‘EU’ and
‘Kaunas University of Technology’. Individual concepts are usually proper nouns

and, therefore, their first letter is capitalized. Individual concepts may also be num-
bers, e.g., ‘2020'.

- The ‘verb’ formatting is for verbs or prepositions or a combination thereof used
in verb concepts. A verb is formed in a singular active form and its synonymous
form is passive (e.g., ‘customer provides personal data” and its synonymous form *
personal data is provided by customer’).

i /i i

- The’ ! formattmg represents linguistic symbols, e.g., , ,
’,and * . Keywords are not used directly in expressmg
noun concepts or verb concepts, but rather in their definitions and other properties

Appl. Sci. 2021, 11, 6464

60f23

supplementing the concepts’ primary presentations. Keywords are also used in
expressing business rules.

It is important to note that SBVR business vocabulary may also be represented visually
in the form of one or more diagrams. While the SBVR standard itself does not adopt any
graphical notation, various existing visual languages and custom DSLs may be developed
and utilized for this task. However, as SBVR is a part of the OMG’s MOF cluster, it would
seem only natural to use a language that is also based on MOF. For our SBVR-related
research purposes, we developed a UML profile for SBVR Business Vocabulary and a
plug-in for the CASE system MagicDraw. That solution allows modeling SBVR business
vocabularies using visual diagrams [36].

For more details on SBVR BV and BR as well as their implementation, refer to [7].
There, we introduced implementation aspects of semantically rich SBVR business vocabu-
laries within the actual modeling environment.

3.2. Architecture of Profiles Supporting DnD Transformations

Model transformation provides the means to develop a target model from a source
model. Furthermore, we will provide a brief overview of the architecture of the developed
UML profiles to support the DnD transformation metamodel, which was first presented
in [7]; the metamodel itself will not be presented here to avoid unnecessary repetition of
the already published material. The main engineering developments of the approach were
implemented in the CASE system MagicDraw.

Figure 2 presents the main components of the overall implementation architecture.
Here, the core of DnD transformation is deployed in the dark-painted M2M Transformations
profile; native elements of MagicDraw containing other important DnD transformation-
related properties are left unpainted.

One of the main parts of DnD transformation is a transformation pattern («Transfor-
mationPattern»). It is a structured class holding two parts in its structure compartment:
a source part («Source») and a target part («Target»). The source part contains the concept
types (together with their relevant properties) of a source model. The target part contains
the concept types (together with their relevant properties) of a target model. Within each
part, the included concept types may be interconnected with mapping connectors («Mapping-
Connector»). Connectors are also used to define mappings between elements deployed in
different parts (source and target)—these mappings show actual transformation mappings
among concept types of the source and target models.

«Customization» is a stereotype denoting customization classes. These classes invoke
the execution of drag-and-drop action specifications. Property allowed DragAndDrops speci-
fies a set of transformation specifications that can be executed after a user drags and drops
a source element (SourceElement) on the pre-defined target element (customizationTarget).
Only one transformation specification can be executed per each drag-and-drop action
activation. That is, there is more than one transformation specification defined in the al-
lowedDragAndDrops property and a user will be asked to select one specific transformation
from the contextual menu to be executed.

«DragAndDropSpecification» and its specialization «DragAndDropSpecificationExtension»
realizes the rest of the properties of DnD transformation specification that do not fall into
the transformation pattern or customization classes. Those are discussed in detail in [7].

Appl. Sci. 2021, 11, 6464

7 of 23

) «profile»
MagicDraw Profile «imports

cMetamodets Al

UML2 Metamodel

______ 2| {uri=http://www.omg.org/spec/UML/20131001)

A 3
pe—————— | |
1 . = e «import»
«profiles b o oo o RREN.) I
DSL Customization I
——l |
r—ey
J «profiles
ET M2M Transformations
«stereotype»
Customization =
[Class]
customizationTarget : Class [0..1]
allowedDragAndDrops : DragAndDropSpecification [1..7] «stereotypes
DraggedConcept
[Element]
«stereotypex .{-,
stereotype
DragAndDrop Specification ‘, type»
[Class] MappingConnector
[Connector]
-sourceElement : Class [1]
.pro‘a;:ertf&ctnogRes:n C?trm gI;C[C“Ij —— «stereotypes
-relationActionResu ass] : .
-representationText : String [1] MappingConnectorJoin
-appendMode : Boolean = true [Property]
«stereotype» «stereotype» «stereotype»
DragAndDrop SpecificationExtension Source Target
[Class] [Property] [Property]
-targetDiagram : String [0.."]
-mergeConcepts : Boolean = true «stereotype»
-integrationActionResutt : intType [0..1] TransformationPattern
-transformationPattern : TransformationPattern [0..1] [Class]

Figure 2. The overall architecture of UML profiles for supporting DnD transformation [7].

The prototype DnD transformations solution is implemented as a plug-in for the CASE
system MagicDraw (the latest DnD implementation is accessible at https:/ /bitbucket.org/
pauliusdan/magicdraw-d-d-transformations). This CASE system features a UML exten-
sion mechanism via UML profiling and extensibility of both the CASE system functionality
and DSL engine (via API) [37], which are mandatory to support this approach. Among
other components, it includes the SBVR Modeler plug-in for MagicDraw, which uses a UML
profile for SBVR to enable visual modeling functionality [36], model integration solver
plugin, and the SBVR editor. Aside from Model Integration profiles and other previously
developed transformations, the DnD Transformations plugin also contains the library of
newly developed UML UCM — SBVR BV transformations, which are introduced further in
this paper. The core of the DnD transformations functionality is implemented as the M2M
Transformations Core framework, which provides abstract and technology-agnostic imple-
mentation within our research boundaries. The overall architecture also contains the NLP
component, which is currently under intense investigation in our research [8,38] but is not
used and, hence, is not covered in this paper. For more details about the implementation
aspects of the solution, we refer to [7].

3.3. DuD Transformation Specification Explained by Example

Let us assume that a user (e.g., system analyst) has created or somehow obtained,
a UML use case model (Figure 3, panel 1), which is represented in the UML use case
diagram (Figure 3, panel 3). Having this model, he would then prefer to use it as a
source of knowledge for the development of SBVR business vocabulary for that particular
business domain.

https://bitbucket.org/pauliusdan/magicdraw-d-d-transformations
https://bitbucket.org/pauliusdan/magicdraw-d-d-transformations

Appl. Sci. 2021, 11, 6464

8 of 23

B Cont..
Containment

ZV Diag..]d'blmer*‘

Lox

8-/ Relations

| Hme Nustrative exawple (SB{BW v.acamlag_)[_"s car rental rmnaoen’emu
trative example (SBVR Busine: R, 3%

[&8] car rental management X

—————— —
_-— —5

\

oh| car rental management
8- T car rental insurance
I T car reservation
&~ T rental manager's assistant
}- [Dustrative example (UML UseCas:
-/ Relations

&‘s

P vocabulary

’/’ S I

—’

——————— - l

VY manages B Y
Common rental manager's assistant car rental insurance

-
\ /

BB

O apply customer discount
"w confirm car rental contr,

B3-[2) car rental management systes drag-and-drop i -
-/ Relations action

¥ assodiation

8- O confirm car resery;

confirms P

car reservation
-

~— -
o ——— -

N
> m\\

O create car rental’ contrac & drag-and-drop I
make car request . <
Make wantare

(nmanagecuvenulns:ar\

E) T PrirtearTentere:

B O provide additional per:

O update car rental
. E]aummabcdvou

IOunecne
—_— — 1 Packace

t syster

ental
renu manager’s amtanl

—— —

an

car rental management syste|

L% X .rental manager's \//&ﬁnr; ‘;’\\
! assistant 1 y
Common ! _ reservation
| Class Diagram !
M___.H._‘- S —

I
manage car ; |
rental insurance

|

Figure 3. An illustrative example of DnD transformation in action (refer to [6] to view the full specification of the UML use

case model and SBVR business vocabulary presented in this example).

While such vocabulary could be developed manually from scratch, its development

could also be automated to some degree by utilizing the model transformation functionality
provided by the modeling environment. Our presented solution enables the user to use
drag-and-drop actions selectively and intuitively on certain use case model elements by
triggering predefined transformation actions to generate a set of one or more related
business vocabulary elements and represent those elements in the opened SBVR business
vocabulary diagram (Figure 3, panel 2).

Next, based on the example presented in Figure 3, let us discuss two illustrative

scenarios of using drag-and-drop actions that will enact specific DnD transformations
(Figure 4) producing certain results:

1.

If we select a use case ‘manage car rental insurance’ (Figure 3, panel A1) and drag-and-
drop it onto the business vocabulary diagram, then a verb concept ‘rental manager’s
assistant manages car rental insurance” will be automatically created in the SBVR
business vocabulary (Figure 3, panel A2). This occurs because we specified a transfor-
mation rule to transform a use case and its actors to a corresponding number of verb
concepts (a verb concept for each triplet <UseCase-Association-Actor>) when that use
case is dropped onto the business vocabulary diagram (Figure 4, panel 2).

If we select a use case ‘rental manager’s assistant’ (Figure 3, panel B1) and drag-
and-drop it onto the business vocabulary diagram, then two verb concepts, namely *
rental manager’s assistant ~ manages car rental insurance’ and ‘rental manager’s
assistant confirms car reservation’, will be automatically created in the SBVR busi-
ness vocabulary (Figure 3, panel B2). This happens because we specified a DnD
transformation rule instructed to transform an actor and all use cases associated with
it to a corresponding number of verb concepts (one verb concept for each triplet
<Actor-Association-UseCase>) when that actor is dragged and dropped onto the busi-
ness vocabulary diagram (Figure 4, panel 2).

Appl. Sci. 2021, 11, 6464 9 of 23

| «Customizations 2 ExamplaryMappingPattern
| ExamplaryCuztomization

«Source» «Target»
allowedDragAndDrops = Source Target
EJExamplaryDnDSpect y
EJexamplaryDnDSpec2 :Actor | : general concept T
L I J
0 ‘DragAnEiDa:“;S::yc;:;;%f::ensm’ : Association | association { Association |

lendType : Type [1.7] | lendType : Type [1.."] |

representationText = "Transform use case and its actor
to verb concept” —_— —
sourceElement = EJUseCase]

-

EXTRACFVERS)

:UseCase : general concept T

integrationA ctionResult = partial
targetDiagram = "Business Vocabulary” . {EXTRACTNOUN}
transformationPattern = E5ExamplaryM appingPattern

«DragAndDropSpecificationExtensions
ExamplaryDnDSpec2

representationText = “Transform actor and its use case
to verb concept”
sourceElement = EActor

integrationActionResult = partial
targetDiagram = "Business Vocabulary”
transformationPattern = EJExamplaryM appingPattern

Figure 4. Example of DnD transformations specification.

Figure 4 presents the DnD transformation specification, which is executed by the
transformation engine upon performing the above-mentioned scenarios.

The DnD transformation specification is composed of a customization class Exam-
plaryCustomization (Figure 4, panel 1), DnD action specifications ExamplaryDnDSpecl and
ExamplaryDnDSpec2 (Figure 4, panels 2,3), and a transformation pattern ExamplaryMap-
pingPattern (Figure 4, panel 4). ExamplaryCustomization refers to the specified ExamplaryD-
nDSpecl and ExamplaryDnDSpec2 allowing these specifications to be executed by the
transformation engine when a user drags a sourceElement and drops it onto a customization-
Target. In our case, the customizationTarget is not defined because the target element is the
target diagram itself defined in the targetDiagram property.

In this case, the ExamplaryCustomization together with ExamplaryDnDSpecl (Figure 4,
panel 2) defines that the transformation will be executed after a user drags an instance
of UseCase from the use case model and drops it onto the Business Vocabulary diagram.
Accordingly, the same ExamplaryCustomization and the second DnD action specification
ExamplaryDnDSpec2 (Figure 4, panel 3) defines that the transformation will be executed
after a user drags an instance of an Actor from the source model and drops it onto the
target diagram. Note that both ExamplaryDnDSpecl and ExamplaryDnDSpec2 define the
same ExamplaryMappingPattern, which means that both transformations will refer to the
same transformation pattern upon their execution. The ExamplaryMappingPattern defines
the following:

- Source part, which specifies UML UseCase Model pattern holding Actor, UseCase,
and Association;

- Target part, which specifies the SBVR Business Vocabulary pattern holding two general
concepts related to one another using association. The triplet <general concept-
association-general concept> forms a verb concept;

- Connectors that act as mappings between inner elements of the source and target parts.
These mappings define atomic transformations on the element-to-element level;

- Connectors among the inner elements themselves within the source and target parts.
Relationships among the inner elements are defined based on the underlying meta-
models of UML and SBVR.

In this case, after a user drags the use case ‘manage car rental insurance’ from the
UCM and drops it onto the diagram of a business vocabulary (Figure 3, panel A1), all actors

Appl. Sci. 2021, 11, 6464

10 of 23

associated with the dragged use case will be collected and transformed to corresponding
SBVR elements together with the use case. The transformation result will comprise a
general concept ‘rental manager’s assistant’, association with verb wording ‘manages’, and
another general concept ‘car rental insurance’. The transformation also includes NLP
operators EXTRACTNOUN() and EXTRACTVERB() for extracting noun/noun phrase and
verb/verb phrase correspondingly (see Section 3.4 for more information). Following a
similar logic, another specified DnD action specification (Figure 4, panel 3) is executed when
selecting the actor ‘rental manager’s assistant’ and dropping it into the business vocabulary
diagram. To see a full set of the specified DnD transformations, refer to Section 4.

3.4. Linguistic Text Processing

Text processing operators not only help to improve the quality of results of automatic
M2M transformations but also speed up the process of semi-automatic transformations
by adding a degree of automation to text analysis, which would otherwise have to be
performed by a user himself. In this section, we apply a set of linguistic text processing
operators that improves text processing tasks; these operators were previously intro-
duced in [38].

The following operators were defined for the linguistic text processing in the UML
UCM — SBVR BV approach:

- EXTRACTNOUN(phrase, ‘all’)—extracts nouns/noun phrases from the phrase. If the
second parameter is set to ‘all’, all possible nouns/noun phrases will be extracted;
otherwise, the most general noun phrase will be extracted;

- EXTRACTVERB(phrase)—extracts a verb wording from the phrase;

- CONCAT(phrase, ...)—concatenates multiple text phrases, including the names of
the source elements or conventional text chunks (which are represented using single
quotes such as ‘text’).

In this paper, we did not consider advanced NLP functionality as one of our objectives.
Therefore, we present the simplified versions of EXTRACTNOUN() and EXTRACTVERB(),
which were applied for text processing in this paper:

- EXTRACTVERBY) is simplified to extracting the first word in the phrase, relying upon
the fact that this operator will mostly be applied for processing Use Case element
names, which are considered to be named using the pattern <VERB><NOUN> | <NOUN
PHRASE>. This pattern is generally considered as a good naming practice for naming
activity-like UML model elements, such as use cases in use case diagrams or activities in
activity diagrams.

- EXTRACTNOUN() is simplified to extracting the remaining part of the given phrase.
These restrictions do not impact evaluation results presented in this paper as the focus

lays on the structural soundness of the transformation output. In other words, we seek

to verify if a correct number of corresponding target elements are generated, rather than
semantic soundness, which aims at verifying the semantic validity of the acquired output

(e.g., whether the label actually represents a valid noun phrase or a verb phrase).

4. Specifications of Transformation Rules for UML UCM — SBVR BV Transformation
This section introduces a set of model-based transformation rule specifications for the
UML UCM — SBVR BV approach.
Note that the formal definition of the set of identified transformation rules was already
presented in [6]; therefore, to save space and to avoid unnecessary repetition, we will omit
the formal presentation of rules in this paper.

4.1. DuD Transformation Rules for Extracting SBVR Noun Concepts

Listing 1 presents the specification of transformation rules for extracting SBVR general
concepts from UML use case models.

Appl. Sci. 2021, 11, 6464 11 of 23

Listing 1. Transformation rules for extracting SBVR general concepts from UML use case models.

T1. Transform an actor (UML) into a general concept (SBVR).
Specification:

«Customization» % Actor-BY_Pattern

Actor-BV_Custom
T on «3ources «Targets
allowedDragAndDrops = A ctor-BY_DnD Source Target
: Actor | : general concept T
«DragandDropSpecificationExtenszions
Actor-BV_DnD

representationText = Transform actér to general concept”
sourceElement = HActor

full

integrationActionResult
mergeConcepts = true
targetDiagram = "Business Vocabulary”

transformationPattern = EHActor-BY_Pattern

T2. Transform a system boundary (UML) into a general concept (SBVR).

Specification:
«Customization» 5% Bound-BV_Pattern
Bound-BV_Custom
Cust «Sources aTargets
allowedDragAndDrops = Source Target
EBoundary-BV_DnD ~
ElsoundContBound-8Y_DnD pstem :general T

«DragAndDropSpecificationExtension»
Boundary-BV_DnD

representationText = "Transform system boundary to general concept”
sourceElement = #* Subsystem

integrationA ctionResult = full
mergeConcepts = frue
targetDiagram = "Business \Vocabulary™
transformationPattern = EElound-EIV_Pa.ttem

Note that this transformation specification is comprised of two transformation rules T2 and Ts specified by a customization class Boundary-BV_Custom
referencing two drag-and-drop specifications (Boundary-BV_DnD —for the T2; BoundaryContBoundary-BV_DnD—for the Ts) and their corresponding
transformation patterns (Sections 3.2 and 3.3 explains these dependencies in more detail). This is because both these rules have the same customization
target, i.e., the target element, which is where the source element is being dragged and dropped onto. In this case, the customization target has no
assigned value meaning that the source elements are being dragged and dropped directly onto targetDiagram, which is equal to ‘Business Vocabulary’.
To avoid excessive details that are irrelevant for the particular transformation rule Tx, we will present only those classes that are relevant to that
particular Tx. In the context of Tz, classes related to Ts are irrelevant and therefore are filtered out from this specification view. The same principle
holds for all DnD transformation specifications presented in Listings 1 and 2.

Ts. Form one or more general concepts (SBVR) by text-processing the name of a use case (UML).

Text processing. Extract one or more nouns/noun phrases from the name of a use case:

EXTRACTNOUN(UCM(use_case: UseCase), all) — {noun_nounphrase}.
The extract {noun_nounphrase} will be formed into one or more general concepts upon the execution of the Ts transformation rule.

Specification:

Appl. Sci. 2021, 11, 6464 12 of 23

«Customizations % UseCase-BV_Pattern
UseCase-BV_Custom

sSources wTargets

allowedDragAndDrops Source Target

Husecase-BV_DnD — | T
:UseCase : general conce
EUSECSS&-BU_D nD2 IEXTRACTNOUN, ally} g o

BHuseCase-8V_DnD3
HuseCase-BY_DnD4
EHuseCase-Bv_DnD5
HuseCase-BV_DnD6

«DragAndDropSpecificationExtensions
UseCase-BV_DnD

representat ion'l_'éxt "Extréd .Q.e.n eral concept

from use case”
integrati on;\;:;ior;liésult -
mergeConcepts = true

targetDiagram = "Business Vocabulary™
transformationP attern = EUseCase-B"z’_F'attern

Ts. Form a general concept (SBVR) from the whole name of a use case (UML).
The acquired general concept are used for constructing verb concepts representing specializations and <<include>> | <<extend>> relationships among

use cases.
Specification:
«Drag&ndDropSpecificationExtensions UseCase-BV_Pattern2
UseCase-BV_DnD2
Dr Specification «30Urces «Targets
representationText = "Transform full use case name Source Target

to general concept”
sourceElement = ElUseCase taic : general concept T
i A |

integrationA ctionResult = full
mergeConcepts = frue
targetDiagram = "Business V ocabulary™
transformationPattern = EUseCase-B‘-.n'_F'aﬂernQ

Note: Customization class for this transformation is presented in Ts.
Ts. Extract one or more general concepts (SBVR) from the text expression representing an extension point (UML).
Text processing. Extract one or more nouns/noun phrases from the extension point:

EXTRACTNOUN(UCM(ext_point: UseCase), all) — {noun_nounphrasej.
The extracted {noun_nounphrase} will be formed into one or more general concepts upon the execution of the Ts transformation rule.

Specification:

«Customizations % ExtPoint-BV_Pattern

ExtPoint-BV_Custom

®SOUrces wTargets
Source Target

allowedDragAndD r- p
EEextPoint-Bv_DnD
EExtPoint-BY_DnD2 : UseCase

+DragandDropSpecificationExtensions ionPoint : ExtensionPoint [0..7] : general concept T

ExtPoint-BV_DnD XTRACTNOUN, all)

"Extract Qéneral concept

representat ion:réxt
from extension point”
sourceEler

integrationActionResult
mergeConcepts = true
targetDiagram = "Business Vocabulary”
transformationPattern = ExtPoint-BY_Pattern

Ts. Extract additional, more general, or otherwise relevant general concepts (SBVR) from the general concepts already formed by the transfor-

mation rules Ts and Ts.
Specification: no separate DnD transformation is specified for the rule Ts because this rule is redundant as all possible nouns and noun phrases are to

be extracted by performing Ts and Ts transformation rules, which will invoke NLP operators in their pre-processing stage.

4.2. DnD Transformation Rules for Extracting SBVR Verb Concepts

According to the business rules ‘mantra’ [35], verb concepts are built upon noun
concepts. Therefore, any of the following DnD transformation specifications implementing
T7-Tyo rules will incorporate patterns from DnD transformation specifications implement-

Appl. Sci. 2021, 11, 6464

ing T1-T¢ rules, which were relevant for the extraction of noun concepts. Next, Listing
2 presents specifications of transformation rules for extracting SBVR verb concepts from

UML use case models.

Listing 2. Transformation rules for extracting SBVR verb concepts from UML use case models.

T7. Form a verb concept (SBVR) by transforming a generalization relationship between two actors (UML). The two general concepts representing
actors are bound using a reserved verb wording ‘generalizes’ in the verb concept (i.e., general concept: generalizes general concepto).

Specification:
«Customizations % ActorGenActor-BV_Pattern
Generalization-BV_Custom
~ustomizatio w3ourcens aTargets
allowedDragAndDrops = Source Target

ElActorGenActor-BY_DnD
E UseCaseGenUseCase-BY_DnD

| : general concept T

«DragAndDropSpecificationExtensions

: Generglization

categorizati

n : Generalization

ActorGenActor-BV_DnD
representationText = "Transform generalization between
actors to categorization betwesn general concepts”

|_gen_e rag: C_Ias;fi; [1]_ |

| specific : Classifier [1] |

|_gen_e ra_l: C_Ias;fi; ['1]_ |

| specific : Classifier [1] |

sourceElement = EGeneralization

integrationActionResult = full
mergeConcepts = true
targetDiagram = "Business Vocabulary”

transformationPattern = HActorGenActor-BY_Pattern

——— 17— ==

: Actor

| : general concept 'r

Note that in the Target part, the name ‘categorization’ is used for the Generalization element. Such a naming convention is used to link concept type A
of the UML profile for SBVR (i.e., ‘categorization’ in this particular case) with the concept type B of the UML itself (i.e., ‘Generalization’), from which
that element A is derived. This is more of a technical specificity of the CASE system on how it handles UML profiles rather than the rule imposed by

us. This element naming convention holds for all other relevant cases in this set of DnD transformation specifications.

Ts. Form a partitive verb concept (SBVR) by transforming an is-part-of relationship between two system boundaries (UCM). The two general
concepts representing system boundaries are bound using a reserved verb wording ‘contains’ in the verb concept (i.e., general concept: contains

general concept2).
Specification:

«DragandDropSpecificationExtensions

BoundContBound-BV_Pattern

BoundContBound-BY_DnD

representationText = "Transf-d-rm s;r.s.tem boundary

aSources
Source

aTargets
Target

containing another system boundary to
partitive verb concept”
sourceEIement_: «_»S_ubs!ystgm

integrationA ctionResult = full
mergeConcepts = frue
targetDiagram = "Business Vocabulary™

transformationPattern = E BoundContBound-BYV_Pattern

subsystem : Component

“jownedElement : Element [0..7]

: Subsystem

: general concept T
e —

partitive verb copcept : Association

ownedEnd : Property [0..7]

- — =L _
l‘WPE=T¥’pe [0..1] |

: general concept T

Note: Customization class for this transformation is presented in To.

Appl. Sci. 2021, 11, 6464

14 of 23

To. Form a verb concept (SBVR) by transforming a use case performed by an actor (UCM).

Specification:

«Customizations 5.%

ActorAssoclseCase-BV_Pattern

Association-BV_Custom

allowedDragAndDrops =
HacterassocUseCase-BY_DnD

EActorassocUseCase-BY_DnD2
HactorAssocUseCase-BY_DnD3

«DragandDropSpecificationExtensions
ActorAssoclUseCase-BV_DnD

rag&lirop Spe

represen’[ation]:e-x,t = Tr:a'.-r{' n.r-r'n- actor associated
with use case to verb concept”
sourceElement = Eﬁsso_ciatio[l

irnegration;\c‘FiGnRe'sullt = pama-l .
mergeConcepts = true

wSources «Targets
Source Target

tActor
—

: general concept T |

: Assaociation

: Assocjation

i_fe nETl,r_pe :_Tyr_l_e [r.“]_;

ownedEnd :| Property [0..%]

_ — A _ _
- — — I“Wpe:Tvpe [0--1]|

:UseCase |(EXTRACTWVERB()

| : general concept T ‘

{EXTRACTNOUN(}

targetDiagram = "Business V ocabulary”™

T1. Form a verb concept (SBVR) by transforming a use case performed by a primary actor. The rule’s logic is similar to the one

defined for the transformation rule To.

Specification:

«DragindDropSpecificationExtensions
ActorAssoclseCase-BV_DnD2

ActorAssocllseCase-BV_Pattern2

representationText = "Transform primary actor associated
with use case to verb concept”
sourceElement = EA ssociation

int egralionAction_IQgsul_t = partial .
mergeConcepts = true
targetDiagram = "Business W ocabulary™

transformationPattern = SActorAssocUseCase-BY_Pattern2

«Sources aTargets
Source Target

: Actor
M

: general concept 'r
|

: Asgociation

association p Association

i_.fe nETy_pe :_Tyr.;e [r.“]_;

FaﬁgableOwn_adEnd : Property [0.."] | |

ownedEnd i Property [0..7]

—_—— =
a

type : Type [0..1] |
- _I_ S

|| {EXTRACTVERH()}

:UseCase |

| : general concept T

{EXTRACTNDUN()

Note: Customization class for this transformation is presented in To.

T11. Form a verb concept (SBVR) by transforming a relationship between a use case and a secondary actor (UCM). Two general
concepts representing a secondary actor and a use case are bound using a reserved verb wording ‘takes part in’ in the verb concept

(i.e., general concepti fakes part in general conceptz).

Specification:

«DragandDropSpecificationExtensions
ActorAssocUseCase-BV_DnD3

representationText = "Trarqs-t't-nr-h-w_.secondar_-' actor associated
with use case to verb concept”
sourceElement = HAssociati

int egralionAdion_R-e,sult =
mergeConcepts = true
targetDiagram = "Business Y ocabulary”

transformationP attern = EA ctorAssocUseCase-BY_Pattern3

partial

ActorAssoclUseCase-BV_Pattern3

aSources aTargets

: general concept T
Enkicd d

association : Association

;_rlaﬁgableOWIngT'ld : Property [0.."] |

————— ownedEnd | Property [0.."]

=
tvoe :
{CONEIAT takes patt in')} | type: Type [0.1] |

l—fenETy_p_e :_Typ_e [r.']_; - = =

: UseCase

general concept T

Note: Customization class for this transformation is presented in To.

T12. Form a verb concept (SBVR) by transforming a specialized use case performed by an actor inherited from a more general use

case (UML).

Appl. Sci. 2021, 11, 6464 15 of 23

Specification:
«DragAndDropSpecificationExtensions UseCase-BV_Pattern3
UseCase-BV_DnD3
D = - wSources «Targets
representationText = "Transform use case and its actor Source Target
inherited from more general use case to verb concept”
sourceElement = HUseCase = tion : Actor | :general concept T

imegratiom\c{ioﬂResurt—pamal- A NE=== |

mergeConcepts = true | fendType : Type [1.] I association | Association
:UseCase

targetDiagram = "Business Vocabulany” | ||| T
transformationPattern = EUseCase-E!V_F'arlernB

dEnd i Property [0..*]

=

—_—
- — {EXTRACTVERB() | "ype:Type 041
| general : Classifier [1] | —.= .= = —
_______ |

| specific : Classifier [1] || [Usecase I T
_______ {EXTRACTNOUN()

Note: Customization class for this transformation is presented in Ts.

T1. Form a verb concept (SBVR) by transforming an included use case (the addition) performed by an actor inherited from an
including (the base) use case (UML).

Specification:
«DragandDropSpecificationExtensions UseCase-BV_Patternd
UseCase-BV_DnD4
D Cirop n «Sources aTargets
representationText = "Transform use case and its actor Source Target
inherited from including base use case to verb concept”
sourceElement = Busecase) * Actor : general concept T
integrationA ctionResult = partial : Association
mergeConcepts=true | |||- = - = — — —| association : Association
targetDiagram = "Business V ocabulary™ | fendType : Type [1.] {l
- Bl e o Bttt 1 |] —— ownedEnd : Property [0.."]
transformationPattern = EUseCase-BV_F'arterm
. .
Include | t_ype_. Tipe_[_ﬂ..ﬂ |
77777777 {EXTRACTVERB()]
| includingCase : UseCase [1] |_
I_ ;ddﬁion_: U;ec_ase_[ﬂ_ u :UseCase : general concept T
________ | KEXTRACTNOUN()}

Note: Customization class for this transformation is presented in Ts.

Tu. Form a verb concept (SBVR) by transforming an extending use case (the extension) performed by an actor inherited from an
extended (the base) use case (UML).

Specification:
«DragandDropSpecificationExtensions UseCase-BV_Patterns

UseCase-BV_DnD5

Drag&Drmp Specification wSources «Targets
representationText = "Transform use case and its actor Source Target
inherited from extended base use case to verb concept”
sourceElement = EUS Ca : Actor : general concept T
. . DragAndD P : Association
integrationActionResult = partial

—————— 1 association :|Association

mergeConcepts = true | lendType : Type [1.."]

targetDiagram = "Business Vocabulary™ | ||| e H dEnd b o
transtormationPaﬂem:EUseCase-BV_F'arternﬁ : UseCase ownedEnd : Property [0.7]

_—
l‘tvpe Type [0.1] |

TextendedCase : UseCase [] | {BXTRACTVERB()

;_ e_xte;sio_n :EseEa; [ﬁ —l__i :UseCase | : general concept T

EXTRACTNOUN{}

Note: Customization class for this transformation is presented in Ts.

T15. Form one or more unary verb concepts (characteristics) (SBVR) by transforming the condition of an extension point (UML).

Specification:

Appl. Sci. 2021, 11, 6464 16 of 23

«DragAandDropSpecificationExtensions ExtPoint-BV_Pattern2
ExtPoint-BV_DnD2

: tion «Sources aTargets
representationText = "Extract unary verb concept Source Target
from extension point”
sourceElement = HExtensionPoint Elisetase general concept : Class
i i i s i extensionPoint : ExtensionPoint [0..
ﬁ;ﬂ?éﬁﬂﬁf p'g'f{ terf:;” o O [Tiearacmiouncs | *lattribute : Property [0.] |
targetDiagram = "Business Y ocabulary™ {EXTRACTVERB()} | | =

transformationPattern = EExtPoim-B\t’_F'aﬂ ern

Note: Customization class for this transformation is presented in Ts.

T1. Form a verb concept (SBVR) by transforming a use case executed by a boundary in which that use case is contained (UML).

Specification:
«DragandDropSpecificationExtensions UseCase-BV_Patternt

UseCase-BV_DnD&

C O cification «Sources aTarget»
representationText = "Transform use case and boundary Source Target
performing that use case to verb concept” I I
sourceElement EUSECGSE Subsystem : Component | | : general concept T |
integrationA ctionResult = partial association | Association
mergaConcepts = trug ‘UsgCase

{EXTRACTVERB();

targetDiagram = "Business Vocabulary”

dEnd : Py 0.
transformationPattern = ElUseCase-BY_Pattens sl DLl L

| subject : Classifier [0.."] |
J

"*type : Type [0.4]
eardemioungy | | — — - — — |

| : general concept T

Note: Customization class for this transformation is presented in Ts.

T17. Form a verb concept (SBVR) by transforming a Generalization relationship between two use cases (UML). Two general con-
cepts representing use cases are bound using a reserved verb wording ‘is a generalized case of in the verb concept (i.e., general

concepti is a generalized case of general concepto).

Specification:
«DragAndDropSpecificationExtensions UseCaseGenlUseCase-BV_Pattern
UseCaseGenlUseCase-BV_DnD

I Drop Specific «Sourcen «Targets
representationText = "Transform generalization between Source Target
use cases to categorization between general concepts”
sourceElement = HGeneralization iUseCase i general concep
integrationA ctionResult = full = [categorization|: Generalization
mergeConcepts = true : Generalization

targetDiagram = "Business V ocabulary” | general : Classifier [1] |

transformationPattern = A ctorGenActor-BY_Pattern | general: Classifier [1] | —
| {CONCAT(is a generalized — _—

case ofJ} | specifE: aas;ifie_r [1T |

| specific : Classifier [1] |

:UseCase : general concept 'r

Note: Customization class for this transformation is presented in T7.

Ts. Form a verb concept (SBVR) by transforming an Include relationship between two use cases (UML). Two general concepts
representing use cases are bound using a reserved verb wording ‘includes’ in the verb concept (i.e., general concepti includes general

conceptz).

Appl. Sci. 2021, 11, 6464

17 of 23

Specification:

«Customizations %
Include-BV_Custom

allowedDragAndDrops = EUseCasel nclUseCase-BYV_DnD

«DragAndDropSpecificationExtension»
UseCaselnclUseCase-BY_DnD

representationText = "Transform base use case and included

UseCaselnclUseCase-BV_Pattern

«Sources
Source

«Targets
Target

:UseCase
|

: general concept T

:Incjude

associatign : Association

use case toverb concept”
sourceElement = Hinclude

integrationActionResult = full
mergeConcepts = true
targetDiagram = "Business \ocabulary™

transformationPattern = EUseCasel nclUseCase-BY_Pattern

ownedEnd : Property [0..%]

| includingCase_: Us_eC;se_[ﬂ_‘

CONCAT(includes)} “Mype : Type [0.1] |
| |

| addition : UseCase [1]
e

:UseCase

: general concept T

T19. The rule forms a verb concept (SBVR) by transforming an Extend relationship between two use cases (UML). Two general
concepts representing use cases are bound using a reserved verb wording ‘extends’ in the verb concept (i.e., general conceptz extends

general concepti).

Specification:
«Customizations % UseCaseExtUseCase-BV_Pattern
Extend-BV_Custom
s tion «Sources aTargets
allowedDragAndDrops = EUseCaseExtUseCase-BY_DnD Source Target

«DragandDropSpecificationExtensions
UseCaseExtUseCase-BV_DnD 'Ex#end

:UseCase : general concept T
=] o

use case to verb concept”
sourceElement = HExtend

integration.ActionF'_.s.-—s’ult.
mergeConcepts = true
targetDiagram = "Business Vocabulary”

representationText = ":I';én;fb'-rm' bas.é.u.se case and extending

transformationPattern = EUseCaseExtUseC ase-BYV_Pattern

association|: Association

CONCAT(extends')] ownedEnd : Property [0.."]

e ——— e T —,
|

xtendedCase : UseCase [1] | type : Type [0..1] |

:UseCase : general concept T

T20. The rule forms additional verb concepts (SBVR) by analyzing and transforming the relationships among the general concepts

formed as a result of the Te.

Specification: This rule cannot be modeled and executed using the current existing DnD transformation means. Such transformation
is based purely on semantic text analysis (detection and resolution of synonyms, hyponyms, hypernyms, holonyms, meronymes, etc.).

Note that the applied techniques do not automatically validate the semantics of
the extracted verb concepts. It is assumed that the extracted SBVR BV entries are to be
checked by a user himself who is actively participating in the whole transformation process.
The transformations satisfy some of the formal requirements of model transformation
languages, such as determinism, termination, or typing, as they are assumed to always
terminate and provide the expected set of outputs with the predefined types each time
they are executed given valid source inputs. Nevertheless, due to the definition of partial
transformations, the user himself is responsible for the full validation of the output elements
and their semantic correspondence to the modeling objectives.

5. Experimental Evaluation

The main goal of the experiment was to find out the accuracy of DnD transformations
(Tpnp) for extracting structurally sound SBVR BV from UML UCM by comparing that
result to the result of manual extraction Ty, which is considered as a benchmark (‘gold
standard’) in our experiment. It should be pointed out that the semantic correctness of
the names (or labels) of output elements themselves are not considered in this experiment
as this would require introducing advanced NLP techniques, which is out of the scope of
this paper.

The experiment was performed using 10 real-world UML use case models each
containing one or more use case diagrams. Note that for both Tp,p and Ty, the same given

Appl. Sci. 2021, 11, 6464

18 of 23

set of transformations (see T1-Ts, T7—T19, Section 4) and the same set of UML use case
models as in [6] were used to maintain the same level of objectivity between both conducted
research works. Where needed, the refactoring of the source models was performed to
eliminate any syntactical modeling errors. Both Tp,p and Ty performed by the authors of
the paper as this did not expose any threats to the experiment validity; in other words, the
human factor does not carry any impact on the performance of the DnD transformations.

Statistics of the input set S together with the benchmark results of Ty are provided in
Table 1. Here, ‘n/a’ means that the UCM element, which was a source for the particular
transformation Tpnp, was absent in the source model, meaning the transformation was not
invoked for that particular case.

Table 1. Statistics of the input set S and benchmark results of Ty;.

Statistics of Source UCM Results of Ty
Diagrams Actors C[.‘iz:s Atsiso(:sia- Boundaries Include Extend E}(’toeir:‘stison Cieartlieorili- GEI:)enr-a : XE(!)I:- 12;1153-
cepts cepts
Case 1 5 8 16 34 9 5 n/a n/a n/a 38 42 92
Case 2 3 12 49 52 7 7 11 n/a n/a 101 81 215
Case 3 1 3 11 10 2 n/a 3 3 n/a 20 14 38
Case 4 2 6 24 11 3 4 5 n/a n/a 43 28 80
Case 5 7 11 39 36 8 n/a 18 n/a 4 75 58 143
Case 6 2 11 35 34 7 n/a 3 n/a n/a 78 44 127
Case 7 2 5 28 17 5 3 11 2 3 50 40 108
Case 8 2 8 33 24 8 n/a 9 n/a 4 63 44 111
Case 9 2 4 50 39 12 10 7 7 n/a 83 58 165
Clage 2 2 39 7 8 9 24 n/a 1 80 61 170

Table 2 presents the results of the experiment in the form of the accuracy of the
extracted results’ structural soundness per each transformation rule. Here, we will follow the
notation used in [38]. Formally, we define the output of a transformation T as structurally
sound if, for each instance of the source model’s concept type (IsmcT) and any generated
output element (instance of the target model’s concept type Itmcr), there exist one or
more constrained mappings between any Itvcr and any Itvcr as the result of T and a
bijective single trace relationship between any Ityvcr generated using T and any Igycr, ie-:
VIsmer, Yirpmer : HM(ISMCT — ITMCT) A\ T(ITMCT — ISMCT)~ That is, each generated
element must be matched to any Igpict and there must exist one or more generated elements
for each Igycr, unless this is restricted by predefined mapping constraints. Hence, we
essentially perform checking if all the elements required to be generated by the predefined
transformation were generated successfully.

Appl. Sci. 2021, 11, 6464 19 of 23
Table 2. Transformation execution performance.

Rule Casel Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Clage
Ty 1 1 1 1 1 1 1 1 1 1
Ty 1 1 1 1 1 1 1 1 1 1
T3 1 0.891 0.818 0.917 0.949 0.921 0.929 0.909 0.88 1
Ty 1 1 1 1 1 1 1 1 1 1
Ts n/a n/a 1 n/a n/a n/a 1 n/a 1 n/a
Ty n/a 1 n/a 1 1 n/a 1 1 1 1
Tg 1 1 n/a n/a n/a 1 1 n/a 1 n/a
Ty 1 0.897 0.8 0.818 0.944 0.914 0.882 0.903 0.872 1
To 1 0.897 0.8 0.818 0.944 0.914 0.882 0.903 0.872 1
Ty 1 1 1 1 1 1 1 1 1 1
T1o n/a n/a n/a 1 n/a n/a n/a n/a n/a n/a
T3 1 1 n/a n/a n/a n/a 1 1 1 1
T1a n/a n/a 1 n/a 1 n/a 1 n/a n/a 1
T1s n/a n/a 1 n/a n/a n/a 1 n/a 1 n/a
Tie 1 1 1 1 1 1 1 1 1 1
T17 n/a n/a n/a 1 n/a n/a n/a n/a n/a n/a
Tig 1 1 n/a 1 n/a n/a 1 1 1 1
Tio n/a 1 1 1 1 1 1 1 1 1

The accuracy for the output’s structural soundness for the rule T for the model M is
defined as follows: Given #ém as the number of generated outputs, #Z ctual @S the number of
actual elements to be generated, and 7 as the number of transformations required to be
performed using rule T, and model M, we define accuracy as the proportion of correctly
performed transformations that produced structurally sound outputs with the correct

number of output elements:

n 1(#1' — 4)
=1 1
ACC(M, Tr) _ 1 geir/ll actua (1)

The value of 1.0 is the maximum possible value, which indicates that all transfor-
mations were performed as expected. ‘n/a’ indicates that particular rules could not be
invoked on these cases due to the absence of UML elements in the model required for
execution. We excluded rules T¢ and Tyg from evaluation due to certain NLP processing
requirements, which are out of scope in this paper.

While the nature of the predefined transformations suggests that these values should
be equal to 1.0, this is not always true for the transformations that apply two or more
text processing operators on the model elements possessing ill-named labels. Table 2
shows that transformations comprising mappings with EXTRACTNOUN/EXTRACTVERB
operators often failed to achieve maximum accuracy values. This is explained by the fact
that to apply both these operations successfully, text labels must contain at least two
words, which was not always the case. There were cases when a UseCase element name
contained a single word (e.g., ‘Login” and “Start’), which resulted in the extraction of valid
verbs, but also in failure to extract noun phrases required to generate general concepts
for valid output tuples (general concept-association-general concept). We addressed this issue
in [38] by introducing DnD transformation specifications to support conditional branching,
which could be used to handle such exceptions and to apply different processing logic of
different cases. Therefore, it is safe to conclude that model element naming practices do
influence the actual performance of the transformations. At the same time, it should be
mentioned that the impact of some of the issues could be minimized to a certain degree by

Appl. Sci. 2021, 11, 6464

20 of 23

utilizing advanced NLP techniques [38]. Nonetheless, the obtained results indicate that
the developed DnD transformations provided structurally correct results for most of the
performed drag-and-drop actions with the selected UCM elements from S.

Moreover, several other observations were made after the experiment:

- Drag-and-drop actions-based transformations proved to be useful and provide the re-
quired level of flexibility in both the visual development of transformations themselves
as well as their actual application. In the future, the existing DnD transformations
library could be further extended by adding additional draggable source elements to
DnD specification classes referencing the already existing transformation patterns or
the newly developed ones. This would allow a user to trigger transformations from
an even larger set of draggable elements in the use case model.

- We argue that the DnD transformation approach may not be the best choice for
performing full-scale M2M transformation on large models. The reason is that it
would take a reasonable amount of time to drag-and-drop every required source
model element to acquire the full target model based on the provided source model.
For the full-scale M2M transformation, it is advised to use the automatic or semi-
automatic M2M transformation approach presented in [6]. The DnD transformation
approach is better suited for the agile and incremental development of visual models
and/or when the models under development are of a smaller volume.

- The experiment provided a strong reassurance that our developed DnD transforma-
tion technology can be applied to the development of transformations for UML and
other visual languages expressed via UML profiles.

- It can be safely concluded that data quality is one of the determining factors which
must be considered while applying this approach. No NLP tool will be able to handle
invalid names or bad modeling practices despite its performance in other fields.

- While NLP functionality was not considered in this paper, it can be useful to improve
the semantic quality of the generated elements [8,38]. Furthermore, this would allow
enabling the transformation rules T¢ and Ty that were described in this paper but
excluded from our experimentation. For example, detection of synonyms could help
improve merging (or semantical relations identification) of the synonymous concepts
in the SBVR business vocabulary.

- Moreover, NLP capabilities enable the processing of ‘one-to-many’ type of transfor-
mation rules (i.e., the ones that generate multiple output elements for a given single
input element). This is enabled by using the ‘all’ parameter in the EXTRACTNOUN()
operator, which would then extract all available noun phrases from the text instead of
a single text chunk. This also is useful in processing disjunctive or conjunctive clauses
containing multiple instances of verb and noun phrases. However, such processing
of element labels is only possible when using advanced NLP techniques, such as
dependency parsing or relation extraction.

6. Conclusions

Well-structured and formalized business vocabularies provide certain benefits to
system developers by providing a shared vocabulary for the project and means to reuse
existing artifacts, etc. However, manual development of such business vocabularies proves
to be a human effort-consuming and time-consuming task. We argue that one of the
methods of acquiring business vocabularies faster and with less effort is to automate the
extraction of such vocabularies from the existing sources of knowledge.

In this paper, we presented conceptual and implementational aspects of the approach
for extracting SBVR BV from UML UCM, which utilizes M2M transformation technology
based on the drag-and-drop actions (DnD transformation) presented in [7]. One of the
key features of DnD transformation technology is the model-driven development and
customization of M2M transformations. Such an approach increases the extensibility,
flexibility, and usability features of this kind of M2M transformation when used in a
CASE system.

Appl. Sci. 2021, 11, 6464 21 0f 23

The conducted experiment shows that the developed library of DnD transformations
correctly interprets and executes the full set of transformation rules for the extraction of
SBVR business vocabularies provided in [6]. This provides our approach with the same
transformation power and, at the same time, more flexibility to the overall modeling process
when compared to our previous development of UML UCM — SBVR BV transformation. It
also proves, once again, that our developed DnD transformation technology can be applied
to transforming various models based on UML and UML profiles.

For future developments, we view improving the NLP component as the most promis-
ing research trend providing even greater level automation and semantic quality to the
transformation results. Such an NLP component could then be adopted for other already
developed M2M transformation approaches as well as future developments in this area,
providing impact to the whole model-driven system development process. Yet another
research could be focused on the development of DnD transformations library for gen-
erating UML use case models from the existing SBVR business vocabularies (possibly,
from business rulesets)—this would be a model transformation to the opposite direction
compared to the one presented in this paper. Such development would deliver a complete
all-around transformation solution (UML UCM <— SBVR BV). From the DnD transfor-
mation technology point of view, this model transformation could be developed relatively
easily; the harder part would be the identification of the full set of mapping rules for this
new model transformation because such a bi-directional transformation would not be
fully reflective.

Author Contributions: Conceptualization, T.S. and P.D.; methodology, T.S. and P.D.; software, P.D.
and T.S,; validation, T.S., PD., R.B., A.O. and].C,; investigation, P.D., R.B., A.O. and]J.C.; resources,
PD., TS. and R.B.; writing—original draft preparation, T.S., P.D.; writing—review and editing, T.S.,
PD., R.B,, A.O. and J.C; visualization, T.S.; supervision, T.S.; funding acquisition, R.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. OMG. Unified Modeling Language (OMG UML). Version 2.5. OMG Doc. Number: Formal/2015-03-01. Available online:
www.omg.org/spec/UML/2.5 (accessed on 4 April 2020).

2. OMG. Semantics of Business Vocabulary and Rules (SBVR) v.1.4, OMG Doc. No.: Formal/2017-05-05. 2017. Available online:
https:/ /www.omg.org/spec/SBVR/1.4/PDF (accessed on 4 April 2020).

3. OMG. Meta Object Facility (MOF) 2.0 Query/View /Transformation Specification v1.1, OMG Doc. No.: Formal/2011-01-01. 2011.
Available online: https://manualzz.com/doc/47620449 /meta-object-facility--mof--2.0-query-view--transformation (accessed
on 4 April 2020).

4. OMG. Model Driven Architecture (MDA)—The Architecture of Choice for a Changing World. Available online: http://www.
omg.org/mda/specs.htm (accessed on 4 April 2020).

5. Kapocius, K.; Skersys, T.; Butleris, R. The need for business vocabularies in BPM or ISD related activities: Survey based study. In
Proceedings of the IEEE International Conference on Computer and Information Technology, Xi’an, China, 11-13 September 2014;
pp. 622-629. [CrossRef]

6. Skersys, T.; Danenas, P; Butleris, R. Extracting SBVR business vocabularies and business rules from UML use case diagrams. J.
Syst. Softw. 2018, 141, 111-130. [CrossRef]

7. Skersys, T.; Danénas, P.; Butleris, R. Model-based M2M transformations based on drag-and-drop actions: Approach and
implementation. J. Syst. Softw. 2016, 122, 327-341. [CrossRef]

8. Danenas, P; Skersys, T.; Butleris, R. Natural language processing-enhanced extraction of SBVR business vocabularies and business
rules from UML use case diagrams. In Data and Knowledge Engineering; Elsevier: Amsterdam, The Netherlands, 2020; Volume 128,
pp. 1-19. [CrossRef]

9. Thakore, D.; Upadhyay, A.R. Development of Use Case Model from Software Requirement using in-between SBVR format at

Analysis Phase. Int. . Adv. Comput. Theory Eng. 2013, 2, 86-92.

www.omg.org/spec/UML/2.5
https://www.omg.org/spec/SBVR/1.4/PDF
https://manualzz.com/doc/47620449/meta-object-facility--mof--2.0-query-view--transformation
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm
http://doi.org/10.1109/cit.2014.111
http://doi.org/10.1016/j.jss.2018.03.061
http://doi.org/10.1016/j.jss.2016.09.046
http://doi.org/10.1016/j.datak.2020.101822

Appl. Sci. 2021, 11, 6464 22 0f 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

Cabot, J.; Pau, R.; Raventés, R. From UML/OCL to SBVR specifications: A challenging transformation. Inf. Syst. 2010, 35,
417-440. [CrossRef]

Nemuraite, L.; Skersys, T.; Sukys, A.; Sinkevicius, E.; Ablonskis, L. VETIS tool for editing and transforming SBVR business
vocabularies and business rules into UML&OCL models. In Proceedings of the International Conference on Information and
Software Technologies, Kaunas, Lithuania, 21-23 April 2010; pp. 377-384.

Afreen, H.; Bajwa, 1.S.; Bordbar, B. SBVR2UML: A Challenging Transformation. In Proceedings of the Frontiers of Information
Technology, Islamabad, Pakistan, 19-21 December 2011; pp. 33-38. [CrossRef]

Awasthi, S.; Nayak, A. Transformation of SBVR business rules to UML class model. In Proceedings of the Conceptual Structures for
STEM Research and Education 20th International Conference on Conceptual Structures, ICCS 2013, Mumbai, India, 10-12 January
2013; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; Volume 7735, pp. 277-288. [CrossRef]
Bajwa, 1.S.; Lee, M.G. Transformation Rules for Translating Business Rules to OCL Constraints. In Proceedings of the
Modelling—Foundation and Applications, 7th European Conference, ECMFA 2011, Birmingham, UK, 6-9 June 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 132-143. [CrossRef]

Bonais, M.; Rahayu, W.; Pardede, E. Integrating Information Systems Business Rules into a Design Model. In Proceedings
of the 15th International Conference on Network-Based Information Systems, Melbourne, Australia, 26-28 September 2012;
pp. 104-111. [CrossRef]

Malik, S.; Bajwa, LS. Back to Origin: Transformation of Business Process Models to Business Rules. In Business Process Man-
agement Workshops. BPM 2012; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 611-622. [CrossRef]

Skersys, T.; Kapocius, K.; Butleris, R.; Danikauskas, T. Extracting business vocabularies from business process models: SBVR and
BPMN standards-based approach. Comput. Sci. Inf. Syst. 2014, 11, 1515-1535. [CrossRef]

Tutkute, L.; Butleris, R.; Uzdanaviciute, V.; Sinkevicius, E.; Skersys, T.; Kapocius, K. Improving Quality of Business Models using
Business Vocabulary based Synchronization Method. Electron. Electrotech. 2013, 19, 125-130. [CrossRef]

Igbal, U.; Bajwa, L.S. Generating UML activity diagram from SBVR rules. In Proceedings of the Sixth International Conference on
Innovative Computing Technology (INTECH), Dublin, Ireland, 24-26 August 2016; pp. 216-219. [CrossRef]

Essebaa, I.; Chantit, S. Tool support to automate transformations from SBVR to UML use case diagram. In Proceedings of the 13th
International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), Madeira, Portugal, 23-24
March 2018; pp. 525-532. [CrossRef]

Mohanan, M. Automated transformation of NL to OCL constraints via SBVR. Int. |. Adv. Intell. Paradig. 2020, 16, 229-240. [CrossRef]
Tantan, O.C.; Akoka, J. Automated transformation of business rules specification to business processes: From SBVR to BPMN. In
Proceedings of the 26th International Conference on Software Engineering and Knowledge Engineering (SEKE 2014), Vancouver,
BC, Canada, 1-3 July 2014; pp. 684-687.

Steen, B.; Pires, L.E; Iacob, M.E. Automatic generation of optimal business processes from business rules. In Proceedings of the IEEE
International Enterprise Distributed Object Computing Workshop, Vitéria, Brazil, 25-29 October 2010; pp. 117-126. [CrossRef]
Al-Hashemi, R.; Al-Jaafreh, M.; Al-Ramadin, T.; Al-Dmour, A. A Smart Algorithm for Use-Cases Production Based on Name
Entity Recognition. Comput. Inf. Sci. 2015, 8, 51-55. [CrossRef]

Deeptimahanti, D.K,; Sanyal, R. Semi-automatic generation of UML models from natural language requirements. In Proceedings
of the 4th India Conference on Software Engineering (ISEC "11), Thiruvananthapuram, India, 24-27 February 2011; ACM Press:
New York, NY, USA, 2011; pp. 165-174. [CrossRef]

Umber, A.; Bajwa, L.S.; Asif Naeem, M. NL-based automated software requirements elicitation and specification. In Proceedings
of the Communications in Computer and Information Science, Kochi, India, 22-24 July 2011; pp. 30-39. [CrossRef]

Njonko, P.B.F,; El Abed, W. From natural language business requirements to executable models via SBVR. In Proceedings of the
2012 International Conference on Systems and Informatics, ICSAI 2012, Yantai, China, 19-22 May 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 2453-2457. [CrossRef]

Wang, M. Requirements Modeling: From Natural Language to Conceptual Models Using Recursive Object Model (ROM) Analysis.
Ph.D. Thesis, Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada, 2013.

Yue, T.; Briand, L.C.; Labiche, Y. A systematic review of transformation approaches between user requirements and analysis
models. Requir. Eng. 2011, 16, 75-99. [CrossRef]

Ramzan, S.; Bajwa, 1.S.; Ul Haq, I.; Naeem, M.A. A model transformation from NL to SBVR. In Proceedings of the 2014 9th
International Conference on Digital Information Management (ICDIM), Bangkok, Thailand, 29 September-1 October; 2014; pp.
220-225. [CrossRef]

Guissé, A.; Lévy, E; Nazarenko, A. From regulatory texts to BRMS: How to guide the acquisition of business rules? In Rules on the
Web: Research and Applications. Rule ML 2012; Lecture Notes in Computer Science Series; Bikakis, A., Giurca, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7438, pp. 77-91. [CrossRef]

Landhdufler, M.; Korner, S.J.; Tichy, W.E. From requirements to UML models and back: How automatic processing of text can
support requirements engineering. Softw. Qual. J. 2014, 22, 121-149. [CrossRef]

Dori, D. Model-Based Systems Engineering with OPM and SysML; Springer: New York, NY, USA, 2016. [CrossRef]

Von Halle, B. Business Rules Applied: Building Better Systems Using the Business Rules Approach; John Wiley and Sons: Hoboken, NJ,
USA, 2002; ISBN 978-0-471-41293-9.

http://doi.org/10.1016/j.is.2008.12.002
http://doi.org/10.1109/fit.2011.14
http://doi.org/10.1007/978-3-642-35786-2_21
http://doi.org/10.1007/978-3-642-21470-7_10
http://doi.org/10.1109/nbis.2012.18
http://doi.org/10.1007/978-3-642-36285-9_61
http://doi.org/10.2298/CSIS140106079S
http://doi.org/10.5755/j01.eee.19.6.3426
http://doi.org/10.1109/intech.2016.7845094
http://doi.org/10.5220/0006817705250532
http://doi.org/10.1504/IJAIP.2020.107524
http://doi.org/10.1109/EDOCW.2010.40
http://doi.org/10.5539/cis.v8n4p51
http://doi.org/10.1145/1953355.1953378
http://doi.org/10.1007/978-3-642-22714-1_4
http://doi.org/10.1109/ICSAI.2012.6223550
http://doi.org/10.1007/s00766-010-0111-y
http://doi.org/10.1109/ICDIM.2014.6991430
http://doi.org/10.1007/978-3-642-32689-9_7
http://doi.org/10.1007/s11219-013-9210-6
http://doi.org/10.1007/978-1-4939-3295-5

Appl. Sci. 2021, 11, 6464

23 0f 23

35.
36.

37.

38.

OMBG. The Business Rules Manifesto. Available online: Businessrulesgroup.org/brmanifesto.htm (accessed on 4 April 2020).
Skersys, T.; Pavalkis, S.; Nemuraite, L. Implementing semantically rich business vocabularies in CASE tools. In Proceedings of the
International Conference on Numerical Analysis and Applied Mathematics ICNAAM-2014), Rhodes, Greece, 22-28 September
2014; AIP Publishing: New York, NY, USA, 2015; Volume 1648, pp. 1-4. [CrossRef]

No Magic, Inc. UML Profiling and DSL, v 18.1. Available online: www.nomagic.com/files/manuals/MagicDraw%20
UMLProfiling&DSL%20UserGuide.pdf (accessed on 1 April 2020).

Danenas, P.; Skersys, T.; Butleris, R. Extending drag-and-drop actions-based model-to-model transformations with natural
language processing. Appl. Sci. 2020, 10, 6835. [CrossRef]

Businessrulesgroup.org/brmanifesto.htm
http://doi.org/10.1063/1.4912555
www.nomagic.com/files/manuals/MagicDraw%20UMLProfiling&DSL%20UserGuide.pdf
www.nomagic.com/files/manuals/MagicDraw%20UMLProfiling&DSL%20UserGuide.pdf
http://doi.org/10.3390/app10196835

	Introduction
	Related Work
	Concepts and Definitions
	SBVR Business Vocabulary
	Architecture of Profiles Supporting DnD Transformations
	DnD Transformation Specification Explained by Example
	Linguistic Text Processing

	Specifications of Transformation Rules for UML UCM SBVR BV Transformation
	DnD Transformation Rules for Extracting SBVR Noun Concepts
	DnD Transformation Rules for Extracting SBVR Verb Concepts

	Experimental Evaluation
	Conclusions
	References

