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Abstract
Physical health diseases caused by wrong sitting postures are becoming increasingly serious and widespread, especially
for sedentary students and workers. Existing video-based approaches and sensor-based approaches can achieve high
accuracy, while they have limitations like breaching privacy and relying on specific sensor devices. In this work, we pro-
pose Sitsen, a non-contact wireless-based sitting posture recognition system, just using radio frequency signals alone,
which neither compromises the privacy nor requires using various specific sensors. We demonstrate that Sitsen can suc-
cessfully recognize five habitual sitting postures with just one lightweight and low-cost radio frequency identification tag.
The intuition is that different postures induce different phase variations. Due to the received phase readings are cor-
rupted by the environmental noise and hardware imperfection, we employ series of signal processing schemes to obtain
clean phase readings. Using the sliding window approach to extract effective features of the measured phase sequences
and employing an appropriate machine learning algorithm, Sitsen can achieve robust and high performance. Extensive
experiments are conducted in an office with 10 volunteers. The result shows that our system can recognize different sit-
ting postures with an average accuracy of 97:02%.
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Introduction

A large number of office workers and students are
faced with a sedentary phenomenon. Recently, research
shows that most people in the United States spend
54.9% of their waking time in sedentary behaviours.1

Among them, office workers spend 65% of their work-
days sitting, which2 shows that a person spends 6–8 h a
day on sedentary. In fact, sedentary behaviours3,4 and
bad sitting postures are closely related to modern
health musculoskeletal disorders5 such as cervical spon-
dylosis, chronic back pain, joint and muscle pain,
improper spine alignment and spine disc damage.6–10

There is a lot of prospective evidence that static

1School of Information Science and Technology, Northwest University,

Xi’an, People’s Republic of China
2Faculty of Applied Mathematics, Silesian University of Technology,

Gliwice, Poland
3Czestochowa University of Technology, Czestochowa, Poland
4Faculty of Informatics, Multimedia Engineering Department, Kaunas

University of Technology, Kaunas, Lithuania
5Shaanxi Key Laboratory for Network Computing and Security

Technology, School of Computer Science and Engineering, Xi’an

University of Technology, Xi’an, People’s Republic of China
6School of Engineering, Huzhou University, Huzhou, People’s Republic of

China

Corresponding author:

Wei Wei, Shaanxi Key Laboratory for Network Computing and Security

Technology, School of Computer Science and Engineering, Xi’an

University of Technology, Xi’an 710048, Shannxi, People’s Republic of

China.

Email: weiwei@xaut.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/15501477211024846
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F15501477211024846&domain=pdf&date_stamp=2021-07-07


behaviour may be a risk factor for cardiovascular dis-
ease, diabetes and all-cause mortality.11 In order to
provide doctors with useful information to treat these
diseases and prevent them in the office better, we need
to find a way to recognize and monitor sitting postures.

In most existing work, user’s sitting posture is recog-
nized using videos or wearable sensors. Video-based
recognition method12–19 uses the image recorded by the
camera to detect sitting posture. Although they have
higher accuracy, they have obvious drawbacks includ-
ing leakage of privacy and requirement of light. Sensor-
based recognition method20–25 is another approach to
monitor postures of target which is confronted with the
problem that not only affects the comfort of the user,
but also increases usage cost.

Motivated by the requirement of a secure, device-
free and ubiquitous sitting posture recognition, this
article introduces Sitsen, a lightweight, high-precision
system, which is the first non-contact sitting posture
recognition system based on radio frequency identifica-
tion (RFID), as shown in Figure 1. We only use one
tag to detect five different postures (see Figure 2) and

achieve high accuracy. To realize the system, the simple
idea is extracting features to distinguish different sitting
postures, but the obvious challenge is how to find the
effective features. We find an interesting observation
that different positions induce different amplitude of
breathing, as shown in Figure 3. In order to overcome
this challenge, we use the phase difference to measure
user’s breath26 to get sitting posture information. Our
system has no concern with privacy issues, and it does
not demand users to wear the equipment. Meanwhile,
the deployment of our system is also more flexible,
which means it will be capable of being less interfered.

The contributions of this work are as follows:

� We introduce Sitsen, which is the first non-
contact sitting posture recognition system based
on commercial RFID.

� We propose an effective and flexible deployment,
which only needs to put the tag and antenna on
both sides of the user.

� We design the system to recognize sitting pos-
tures using a new solution. We preprocess the
original phase and extract some features to build
database. Then, we use principal component
analysis (PCA) for data dimensionality reduc-
tion. Finally, we use back propagation (BP) net
to recognize five common sitting postures.

� We implement and evaluate the method through
extensive experiments and the average accuracy
of the method is 97.02%.

Related work

Sitsen is related to the following existing works.

Video-based

Video-based approaches require the front-end video
capture camera to provide a clear and stable video sig-
nal. The quality of the video signal directly affects the
effect of video recognition and is susceptible to environ-
mental interference. This method requires cameras to

Figure 1. An example of Sitsen.

Figure 2. The five habitual sitting postures. (a) Posture A means sitting straight. (b) Posture B means back bend forward. (c)
Posture C means sitting backward. (d) Posture D means the waist is straight forward and the waist and thigh are at an angle of 30�.
(e) Posture E means the waist is straight forward and the waist and thigh are at an angle of 45�.
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record the video streams and recognize different sitting
postures using the computer vision graphics processing.
However, the privacy concern is a big issue, especially
in a private environment.

For example, work12 based on video data calculates
the neck angle and torso angle to make the judgement
whether the sitting posture is healthy or not. They cal-
culate the ratio of unhealthy frames to the total frames
to judge if the user sits healthy during that period of
time. Min et al.15 set the judgement of healthy sitting
posture more detailed and avoided interference in com-
plicated environment by deep learning. Paliyawan
et al.16 present the system for monitoring office work-
ers, in order to prevent office workers syndrome.
However, they found the materials and shape of
tracked objects also affected system performance (e.g.
noise may increase when tracking person with different
hairstyles or material of clothes). But the video-based
detection method used in these studies is easy to
involve in users’ privacy issues because of the natural
character of the device’s data collection.

Sensor-based

Sensor-based approaches are a detection device that
can sense the information being measured and can
detect the sensed information relying on specific sensor
devices. The wearable sensor-based approaches can
recognize sitting postures without compromising the
privacy. They mainly used sensors to extract features of
different sitting postures.

For example, Estrada and Vea20 detect proper (or
improper) sitting postures using gyroscope readings
from some chosen human spinal points through mobile
devices attached at these points. However, the user has

to wear the equipment to continue the test, which is
uncomfortable for long-term use. Ma et al.21 classify
the five types of postures they defined using the single
accelerometer. By comparing with the previous study,
the accuracy is lower because the position of the sensor
has been changed and the types of sitting postures are
increased.

RF-based

RFID is a simple wireless system which is used to con-
trol, detect and track objects which neither compro-
mises the privacy nor requires using various specific
sensors. It mainly identifies the marker by the unique
ID number corresponding to the tag, and it does not
require human intervention and work in various envir-
onments. Feng et al.27 use three tags pasted to user’s
back, collecting breathing data to judge user’s sitting
posture. However, this method requires some light-
weight tags to be pasted on the back of the user (similar
to the wearable sensor-based method). The wrinkles on
the clothes with the tags can easily affect the data col-
lection. Meanwhile, the tags can be repeated a limited
number of times. In addition, the position of the tag
will change according to the breathing of the human in
their experiment.

Different from the existing RF-based sitting posture
recognition, Sitsen employs only one lightweight and
low-cost RFID tag beside the user and extracts effec-
tive features from both the time domain and frequency
domain to recognize the sitting postures. Hence, the
tag’s position will not change according to the breath-
ing of human, and users do not need to wear any
equipment.

Figure 3. Phase sequence of different postures.
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To summarize the problems in existing work, video-
based approach has drawbacks in the differences of
physical properties of tracked objects and its insuffi-
cient privacy. Wearable sensor-based approach needs
to wear special equipment. Our system avoids these
problems effectively with RF-based devices, which is
contactless and portable. Besides, our devices will not
be affected by light resistance and radioactive
environment.

System design

The commodity passive RFID system includes RFID
reader, antenna and RFID tag. As shown in Figure 1,
the reader sends RF signal to the space through the
antenna. The tag in the electromagnetic field receives
the RF signal to generate an induced current, which
activates the tag. Then, the tag feeds back its informa-
tion to the antenna through backscattered signals.
Besides the information, the reader measures the
strength and phase of the received signal after demodu-
lation and decoding. Here, we use phase information to
recognize the sitting postures since the RFID reader
needs to be able to output fine-grained phase
information.

For deployment design, our system only uses one
cheap and portable RFID tag and a reader antenna,
which are placed beside two sides of the chair to moni-
tor sitting postures. When the user’s sitting posture
changes, due to the different Fresnel zone,26 the
received signal phase at the reader changes accordingly.
Note that the phase variation for different sitting pos-
ture is unique, which can be used as a reliable primitive
for sitting posture recognition (see Figure 3). The tag
can sense the users’ respiration and we find that the

observed respiration patterns from the measured phase
sequences are distinct under different sitting postures.
Therefore, Sitsen can recognize sitting postures by care-
fully processing the measured phase sequences without
compromising the privacy nor wearing various sensors.

We design our system with three steps: data process-
ing, feature extraction and sitting posture recognition
as shown in Figure 4. Each step is vital for reaching
high performance in sitting posture recognition. We
obtain clean phase sequence after data processing,
select feature whose contribute rate more than 95% by
PCA, and BP net classifier is used in sitting posture rec-
ognition. We will introduce the details of each part in
next section.

Methodology

In this section, we introduce the main methods of our
system.

Data processing

For RFID system, the RFID reader transmits RF sig-
nal through the antennas to activate the passive tag,
and the tag backscatters the signal to the RFID reader.
In this section, we present the design of phase process-
ing module to remove the hardware noise and address
the multipath issue in indoor environment.

As shown in Figure 5, we find that the raw phase
readings have a p or 2p gap between peak and valley
value, which will result in the decreased posture recog-
nition performance. To deal with it, we unwrap the raw
phase to remove the gap comparing with measured
phase sequence, and the result removed the phase shift
is in Figure 5. Due to the environment noise, we use

Figure 4. System overview.
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wavelet denoise and five-point triple smoothing filter to
clean the phase sequence. Figure 6 shows the phase
sequence before and after denoising and smoothing.

Feature extraction

After data processing, the next step is to extract fea-
tures from the phase sequences to represent different
sitting postures. Intuitively, we can use the features (i.e.
14 features from both the time domain and frequency
domain) that are widely used in RF-based activity rec-
ognition systems.27–29 However, we find that some fea-
tures are confusing rather than help with each other
through experiments. Thus, we exclude those features
that do not contribute to the accuracy. We analyse dis-
tributions of each feature both within the same sitting
posture and across different postures. We select the fea-
tures that have large variations among different sitting
postures while keeping stable within the same posture.

Sitsen selects and extract 14 effective features shown in
Table 1 from phase sequences to represent different sit-
ting postures.

The 14 effective features describe characteristics of
the phase sequences in the time domain and frequency
domain, and they obtain enough information about the
five sitting postures to distinguish each other. In detail,
mean (m) is defined as the average of the phase
sequence, while variance (s2), kurtosis, standard devia-
tion (s), max–min (D) and mean crossing rate (MCR)
are used to quantify the magnitude of the phase change
caused by breath.

Above a-mean ratio (AMR) measures the ratio of
the high-energy frames in a window and parameter a is
used together with the window’s root mean square
(RMS) to set a threshold for distinguishing high-energy
frames from low-energy frames. It is defined as

amr a,wð Þ=

PN
i= 1

ind rms fið Þ.a � rms wð Þ½ �
� �

m
ð1Þ

where fi is the frame with the ith largest RMS in win-
dow w, rms(w) is the RMS of window w and ind() is the
indicator function which returns 1 if its argument is true
and 0 otherwise.

Average of top k root mean squares (ATRs) measure
the average RMS of the first k frames with the most
energy. It is used to discern windows containing high-
energy events from windows containing low-energy
events. It is defined as

atr k,wð Þ=

Pk
i= 1

rms fið Þ
� �

k
ð2Þ

where fi is the frame with the ith largest RMS in win-
dow w and k is set to 0.5 s.

Figure 5. Remove phase shift.

Figure 6. Denoise and smooth.

Table 1. Features used in Sitsen.

Basic properties of signals Feature

Time domain Variance (s2)
Standard deviation (s)
Kurtosis
Mean (m)
Max–min (D)
Mean crossing rate (MCR)
Above a-mean ratio (AMR)
Periodicity reversal (Pr)

Frequency domain Frequency (f )
Dominant frequency ratio (DFR)
Left-to-right ratio (LRR)
Full width at half maximum (FWHM)
Energy (E)

Nonlinear Entropy (H)

Li et al. 5



Periodic reversal (Pr) can well describe the periodi-
city of phase sequence. We can model the measured
phase sequence as a sinusoidal wave when detect the
user’s breath. We argue that the larger the amplitude of
the identified sinusoidal wave, the higher the periodicity
level. The measured phase sequence x(t) can be mod-
elled as a sinusoidal wave

x tð Þ=A sin 2pft+O0ð Þ+D+ n0 tð Þ ð3Þ

where the constants A, f , O0 are the amplitude, fre-
quency, initial phase and shift of the identified sinusoi-
dal wave, and n0 is an additive noise. The goodness of
fit can be calculated by the root mean square error
(RMSE) defined as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i= 1

x̂ tð Þ � x tð Þð Þ2
vuut ð4Þ

where x̂(t) is the predicted values at time t using the
sinusoidal model, and x(t) is a measured phase
sequence. N is the length of the x(t). We define the peri-
odicity level of a x(t), denoted as Pr, as the ratio of the
two parameters

Pr=
A

RMSE
ð5Þ

Energy (E) represents the signal strength and is
defined as

E =
XN

i= 1

m2 ð6Þ

where m is the magnitude of fast fourier transformation
(FFT) coefficients, and N is the size of a sliding window.

Dominant frequency ratio (DFR) is calculated as
the ratio of the highest magnitude FFT coefficient to
the sum of the magnitude of all FFT coefficients. DFR
is a vital feature to measure the periodicity in frequency
domain. It is calculated as

DFR=
mfr

E
ð7Þ

where fr is the dominant frequency, and mfr is the ampli-
tude of fr.

Left-to-right ratio (LRR) measures the ratio of the
area covered by the frames from fs to fm to the area
from fm to fe. Full width at half maximum (FWHM)
measures the span of frequencies that are at least half
of the maximum peak’s power.

We define the amount of information in the signal,
denoted as entropy (H)

H = �
XN

i= 1

ni log2 nið Þ ð8Þ

where ni is the normalized value of FFT coefficients.
However, we find that some features have lower con-

tribution rates than others, which would result in long
system delay. Hence, we need to select useful indicators
to classify and judge activities.

PCA is mainly used for data dimensionality reduc-
tion. For a multi-dimensional vector composed of the
characteristics of a series of examples, some elements in
the multi-dimensional vector are not distinguishable.
So, our goal is to find those elements with large
changes, that is, those dimensions with large variances,
and remove those dimensions with little change, so that
the features are all ‘fine products’, and the amount of
calculation is also reduced.

To deal with this problem, we leverage the PCA
algorithm to select effective features which have contri-
bution rate of more than 95%. We use the feature vec-
tor after the PCA algorithm as the database for
establishing the classification model.

Sitting posture recognition

The machine learning method is widely used in wireless
sensing applications. After extracting the effective fea-
tures from the measured phase sequences for different
sitting postures, Sitsen employs BP net classifier to
recognize sitting postures.

Based on these obtained features, we need to build a
stable model to recognize target posture. Unlike other
widely used classifiers (such as K-nearest neighbour
(KNN) and Bayes), BP net classifier has a stronger
capability of generalization with self-adaption, self-
directed learning as well as nonlinear mapping.
Specifically, in training stage, we build the fingerprint
database with extracted features, and we employ a sto-
chastic gradient algorithm to train the model. In testing
stage, we only put the features obtained from raw sig-
nal into the model. The final output of model is the
recognized sitting posture.

Implementation and evaluation

Implementation

As shown in Figures 7 and 8, we implement Sitsen with
one passive tag, an Impinj R420 RFID reader with a
fixed frequency of 924.375 MHz, and an RFID direc-
tional antenna in an office. The maximum transmission
power of the RFID antenna used in this article is
30 dBm, and the maximum gain is 12 dBi. In this arti-
cle, we set the transmission power of the RFID reader
to 24 dBm. The reader is connected to a laptop through
an Ethernet cable, and the laptop is used for data col-
lection. The antenna is connected to the reader with
ultra high frequency (UHF) coaxial feeder and radiates
outward the electromagnetic wave signal emitted by the

6 International Journal of Distributed Sensor Networks



reader. The tag receives and feeds back the signal to the
reader. We also used a camera to record the ground
truth, and we labelled the sitting postures manually.

As for the condition of volunteers, we recruited 10
volunteers, including 6 females and 4 males with the
ages varying from 18 to 25 years old, the heights vary-
ing from 1.6 to 1.83 m and the weights varying from 43
to 70 kg. Figure 9 shows the heights, weights and body
mass indexes (BMIs) of volunteers. Considering how to
guarantee the robustness during the experiment, includ-
ing how to ensure the consistency on the appliance to
different people when deploying experiments, our team
also focus on the choice of different volunteers. Each
volunteer sits on a seat which is between the tag and
antenna with the distance of 90 cm. Seven volunteers
sit for 5 min as a group and 25 min in total for posture
recognition while three volunteers sit for 75 min.

The sitting posture recognition method is pro-
grammed in MATLAB R 2019a. We use BP net as our
method and set the parameters, constructing the model
whose maximum number of iterations is 3000, the

learning rate is 0:0001, the number of neurons in hid-
den layer is 9, the minimum performance gradient is
0:00001, and the minimum training target error is
0:001. Considering that we used BP net which needs
more data, so we used 4=5 the data for the training set
and the rest of data is used for test set to make our
experiment more convincing.

Evaluation metrics

We use the cross validation and employ four metrics
including the accuracy, F1 score, precision and recall
which are widely used in machine leaning field to evalu-
ate the system performance. Accuracy is the proximity
of measurement results to the true value. Precision is
the number of correct positive results divided by the
number of all positive results returned by the classifier.
Recall is the number of correct positive results divided
by the number of all relevant samples (all samples that
should have been identified as positive). F1 score is a
measure of a test’s accuracy, which considers both the
precision and the recall

Precision=
TP

TP+FP
ð9Þ

Recall=
TP

TP+FN
ð10Þ

F1 score=
2 3 precision3 recall

precision+recall
ð11Þ

where TP, FP, TN and FN mean the true positive, false
positive, true negative and false negative, respectively.

Evaluation results

The performance of sitting posture recognition. Figure 10
illustrates the average sitting posture recognition accu-
racy of 10 volunteers, respectively. Among them,

Figure 7. Experimental equipment.

Figure 8. Experimental scenario.

Figure 9. Heights, weights and BMIs of users.
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volunteers from #8 to #10 are monitored for a long
time (75 min), and others are 25 min. As we can see,
our system can achieve high accuracy for each volun-
teer with an average accuracy of 96.7%. To see the per-
formance of each sitting posture clearly, we further plot
the confusion matrix as shown in Figure 11. Obviously,
our system can recognize Posture A (sitting straight)
very well (99%). Posture C and Posture D have a
slightly higher false positive rate.

The performance of different deployment distances. We con-
ducted experiments to detect Posture A (sitting upright)
at positions where the distances between the tag and the
antenna were 80 cm, 90 cm, 1 m, 2 m, 3 m, 4 m and
4.5 m. The results show that the waveform detected at
4–4.5 m is poor and the breathing is weak. Conversely,
it is stronger within 1 m as shown in Figure 12. We

judge that 3 m is the range of the respiratory limited
distance. We can keep the tag and the antenna as far as
the distance with 3 m in the office. Therefore, it is a bet-
ter choice for worker to place our device in their office
where area is about 3 3 3 m2. What’s more, our sys-
tem does not need to wear sensor equipments, which is
a significant advantage that will not affect people’s
daily work.

Comparison with the state-of-the-art work. Since our system
uses wireless signals for sitting posture recognition, we
compare our system with state-of-the-art sitting posture
recognition systems. As shown in Table 2, we compare
the accuracy with the systems which mainly based on
video and wearable equipment. With similar accuracy,
our system does not bring privacy issue and has no
need to wear any equipment. Meanwhile, our detection
method has the advantage of device-free, which
increases the comfort of the user. By the way, com-
pared with video and wearable sensor methods, our
system is cheaper and cost-effective, because one RFID
tag only need 1 dime and our equipment have long dur-
able years.

Also, we have done some work to compare with pre-
vious sitting posture recognition system based on wire-
less signals. SitR27 employs just three low-cost and
lightweight RFID tags pasted to a user’s back and a
reader antenna placed on the back of a chair to recog-
nize seven habitual sitting postures, and they achieve
high performance for sitting posture recognition
through detailed system design. Here, we randomly
selected three volunteers to do the following experi-
ments to compare SitR and Sitsen.

First, we realized SitR, including its system deploy-
ment and data processing methods, then we collected
the data of seven different sitting postures mentioned in
SitR to process. The experimental results show that
SitR can achieve robust and high performance. At the
same time, we used these data to verify our method.
The average recognition accuracy of seven sitting pos-
tures of three volunteers is 98:37%. The experimental
results show that our data processing method is effec-
tive for distinguishing the seven sitting postures men-
tioned in SitR. Then, we used our system deployment
to collect the data of seven different sitting postures
mentioned in SitR, and used our method and the
method in SitR to process them, respectively. The
experiment results show that our system recognize
seven different sitting postures with reaching an average
accuracy of 98:43% while SitR recognize seven differ-
ent sitting postures with reaching an average accuracy
of 96:67%. Next, we evaluated the recognition rate of
the two methods for the five sitting postures mentioned
in our essay. The experiment results show that our sys-
tem is able to recognize five different sitting postures

Figure 10. Recognition accuracy of volunteers.

Figure 11. Recognition accuracy for five postures.
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with reaching an average accuracy of 98:02% while
SitR is able to recognize five different sitting postures
with reaching an average accuracy of 95:67%.

Compared with SitR, our method is more robust to
distinguish sitting postures which have high similarity.
Unlike SitR, which regards forward leaning as a large
class of sitting posture, our system classifies the for-
ward leaning angles in more detail, which makes the
sitting posture have higher similarity. Therefore, our
method can get higher recognition rate for seven dif-
ferent sitting postures mentioned in SitR, and slightly
lower recognition rate for the five sitting postures
mentioned in our essay. In addition, we have similar
accuracy with their work, but we do not need to paste
tags on the user and we made the system deployment
more flexible. In a word, we verify the robustness and
stability of our method as well as the reliability of
SitR.

Discussion

We discussed some of the limitations and opportunities
for system improvements.

Diversity of sitting postures

Our work mainly detects five sitting postures. However,
the sitting postures are full of diversity. The perfor-
mance of Sitsen may decrease if we do not update the
training set or increase other sitting postures. In the
future, we will try to recognize and monitor more sit-
ting postures to make our system more suitable.

Diversity of users

Due to the individual differences of users, users in dif-
ferent height range will need appropriate equipment
deployment. Therefore, we combine some characteris-
tics of users to deploy the equipment properly, so as to
achieve the best effect and improve the robustness of
the system.

Deployment of RFID devices

In our current experiments, the tag is attached to the
tripod. Because RFID tag and read antenna are small
and light, they can be put in the office without occupy-
ing too much area. In future work, we will explore dif-
ferent tag deployment strategies which may relax the
requirement. Also, we will try to make the device
smaller, allowing more people to try and accept the sit-
ting posture recognition using our system.

Conclusion

In this article, we introduce Sitsen, in which the RFID
technology is applied to the sitting posture recognition.
While not requiring to wear sensor equipment, the

Figure 12. Phase sequences of one user in different distances between tag and antenna.

Table 2. Comparison with the state-of-the-art work.

System Method Accuracy

Min et al.15 Video 95:60%
Estrada and Vea20 Wearable equipment 96:13%
Our system RFID tag 97:02%

RFID: radio frequency identification.

Li et al. 9



deployment of our system is becoming more flexible.
As long as a tag and an antenna are placed on both
sides of user, our system can successfully recognize five
habitual sitting postures. The experiment results show
that our system is able to recognize user’s five different
sitting postures with reaching an average accuracy of
97:02%.
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