
D O N A T A S M A Ž E I K A

D O C T O R A L D I S S E R T A T I O N

K a u n a s
2 0 2 1

M O D E L - B A S E D
S Y S T E M S

E N G I N E E R I N G
M E T H O D F O R

C R E A T I N G S E C U R E
S Y S T E M S

KAUNAS UNIVERSITY OF TECHNOLOGY

DONATAS MAŽEIKA

MODEL-BASED SYSTEMS ENGINEERING

METHOD FOR CREATING SECURE SYSTEMS

Doctoral Dissertation

Technological Sciences, Informatics Engineering (T 007)

2021, Kaunas

This doctoral dissertation was prepared at Kaunas University of Technology,

Faculty of Informatics, Department of Information Systems, during 2015–2020. The

research was funded by the State Studies Foundation.

Scientific supervisors:

Prof. Dr. Lina NEMURAITĖ (Kaunas University of Technology, Technological

Sciences, Informatics Engineering – T 007, 2015 - 2016);

Prof. Dr. Rimantas BUTLERIS (Kaunas University of Technology, Technological

Sciences, Informatics Engineering – T 007, 2016 - 2020).

Doctoral dissertation has been published in: https://ktu.edu.

Editor:

Brigita Brasienė (Publishing house “Technologija”)

© D. Mažeika, 2021

https://ktu.edu/

KAUNO TECHNOLOGIJOS UNIVERSITETAS

DONATAS MAŽEIKA

MODELIAIS GRĮSTOS SISTEMŲ INŽINERIJOS

METODAS SAUGIŲ SISTEMŲ KŪRIMUI

Daktaro disertacija

Technologijos mokslai, Informatikos inžinerija (T 007)

2021 Kaunas

Disertacija rengta 2015–2020 metais Kauno technologijos universitete,

Informatikos fakultete, Informacijos sistemų katedroje. Mokslinius tyrimus

rėmė Valstybinis studijų fondas.

Moksliniai vadovai:

Prof. dr. Lina NEMURAITĖ (Kauno technologijos universitetas, technologijos

mokslai, informatikos inžinerija – T 007, 2015 m. – 2016 m.);

Prof. dr. Rimantas BUTLERIS (Kauno technologijos universitetas, technologijos

mokslai, informatikos inžinerija – T 007, 2016 m. – 2020 m.).

Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu

Redagavo:

Brigita Brasienė (leidykla „Technologija”)

© D. Mažeika, 2021

http://ktu.edu/

5

ACKNOWLEDGEMENT

The author of the dissertation would like to express sincere gratitude to the

initial scientific supervisor Prof. Dr. Lina Nemuraitė for introducing to research

work and assisting in various situations. Moreover, the author would like to

acknowledge Prof. Dr. Rimantas Butleris who took the role of the thesis supervisor

and led it until the final stages. The author of the dissertation highly appreciates his

support and the given freedom in writing this dissertation.

The author wishes to express deepest gratitude to his wife Eglė for her endless

support and belief that this dissertation will be finished. The author would like to

thank his mother Irma and father Kazys-Romualdas for always encouraging to

choose any path in life as long as it feels the right one.

The author would like to extend thanks to “No Magic Europe” (now a part of

“Dassault Systèmes”) for their comprehensive and professional support. The author

would like to thank the whole Department of Information Systems of Kaunas

University of Technology for their knowledge and help during the PhD studies.

Finally, the author’s honest thanks go to all magnificent friends and

colleagues.

6

 TABLE OF CONTENTS

TERMS AND ABBREVIATIONS ... 8

FIGURES .. 10

TABLES .. 12

1. INTRODUCTION .. 13

1.1. Motivation ... 13
1.2. Object and scope of the research ... 14
1.3. Problem statement and research questions .. 15
1.4. Aim and objectives .. 16
1.5. Research methodology .. 16
1.6. Defended statements ... 17
1.7. Major contributions and novelty ... 17
1.8. Practical significance ... 18
1.9. Scientific approval ... 18
1.10. Structure of the dissertation .. 18

2. ANALYSIS OF RELATED WORKS .. 19

2.1. Systems Engineering ... 19
2.2. Model-Based Systems Engineering... 22
2.3. Model-Based System Engineering methodologies .. 24

2.3.1. Object-Oriented Systems Engineering Methodology 24
2.3.2. IBM Harmony methodology for SE ... 25
2.3.3. Weilkiens Systems Modelling Process .. 26
2.3.4. NASA JPL State Analysis.. 26
2.3.5. Vitech MBSE Methodology... 27
2.3.6. MagicGrid .. 27
2.3.7. Comparison of MBSE methodologies ... 28

2.4. Security Requirements Engineering .. 30
2.5. Modelling Approaches for Security Analysis ... 31

2.5.1. Unified Architecture Framework (UAF) ... 32
2.5.2. CHASSIS Method .. 33
2.5.3. SysML Sec ... 34
2.5.4. UML Sec .. 35
2.5.5. CORAS .. 35
2.5.6. Security concepts alignment .. 36
2.5.7. Security techniques mapping ... 37

2.6. Security Risk Management ... 38
2.7. Information Security Management System ... 40
2.8. Summary of the Analysis .. 41

3. FEASIBILITY SURVEY ... 43

4. MBSE METHOD FOR CREATING SECURE SYSTEMS 47

4.1. UML Profiles and MOF Standard for formalizing MBSE Security Method .. 47

7

4.2. Requirement terminology for the MBSEsec method implementation 49
4.3. Approach for developing the MBSEsec method ... 50
4.4. Security Domain Model .. 51
4.5. MBSE Security Profile .. 52
4.6. MBSEsec Method implementation ... 54

4.6.1. Overview of the MBSEsec method .. 55
4.6.2. Requirements for the MBSEsec method implementation 57

4.7. Evaluation ... 62
4.8. Qualitative evaluation of the MBSEsec method ... 62
4.9. Experimental evaluation of the MBSEsec method .. 68

4.9.1. Hybrid Sport Utility Vehicle-Power Control Unit 68
4.9.1.1. Experimental evaluation results for the HSUV-Power Control ECU

Case Study .. 78
4.9.2. Flight Status System .. 81

4.9.2.1. Experimental evaluation results for the Flight Status System Case

Study ... 85
4.10. Summary of the answers to the research questions 87

5. CONCLUSIONS .. 89

6. REFERENCES ... 91

7. LIST OF PUBLICATIONS OF DONATAS MAŽEIKA ON THE THEME OF

DISSERTATION ... 99

8

TERMS AND ABBREVIATIONS

Term Description

CAD Computer-Aided Design.

CAE Computer-Aided Engineering.

CASE tool Computer-Aided Software Engineering tool. It is a computer

program that provides automated assistance for software and

system development.

CHASSIS Combined Harm Assessment of Safety and Security for

Information Systems.

CIA Confidentiality, Integrity and Availability. Also known as

the CIA triad or CIA model.

CPS Cyber-Physical System. It is a physical system whose

operations are monitored, controlled, coordinated and

integrated by computer-based algorithms.

DSL Domain Specific Language. It is a computer language

developed to a particular domain. This is in contrast to a

general-purpose language, which is broadly applicable

across domains.

DSML definition

framework

Domain-Specific Modelling Environment based on UML

profiles.

ECU Electronic Control Unit. It is an embedded system in

automotive electronics that controls one or more of the

electrical systems in a vehicle.

fUML Foundational UML. It is a subset of the standard Unified

Modelling Language (UML) for which there are standard,

precise execution semantics.

HSUV Hybrid Sport Utility Vehicle.

INCOSE International Council On Systems Engineering.

ISMS Information Security Management System. It is a framework

of policies and controls that manage security and risks

systematically and across the entire enterprise information

security.

IETF Internet Engineering Task Force. It is an open standards

organization, which develops and promotes voluntary

Internet standards.

MBSE Model-Based Systems Engineering.

MBSEsec The name of the method which is introduced in this thesis.

As well named as the Model-Based Systems Engineering

method for creating secure systems or the MBSE security

method in the dissertation.

MDA Model-Driven Architecture.

9

Modelling Language Any artificial language that can be used to express

information or knowledge in a structure that is defined by a

consistent set of rules.

MOF Meta-Object Facility. The Object Management Group

(OMG) standard for model-driven engineering.

OCL Object Constraint Language. It is a declarative language

describing rules applying to UML models.

OCTAVE Operationally Critical Threat, Asset, and Vulnerability

Evaluation. A framework for identifying and managing

information security risks.

OMG Object Management Group, the consortium aimed at setting

the wide range of technology standards for distributed

object-oriented systems and model-driven development.

OOSEM Object-Oriented Systems Engineering Methodology.

PDCA Model Plan–Do–Check–Act. It is an iterative, four-stage model for

continually improving processes, products or services.

Profile Profile is a lightweight extension mechanism to the UML

language.

SE Systems Engineering (SE).

SysML Systems Modelling Language. It is the OMG standardized

general-purpose graphical modelling language for

specifying, analysing, designing and verifying complex

systems that may include hardware, software, information,

personnel, procedures and facilities.

SYSMOD Weilkiens Systems Modelling Process.

UML Unified Modelling Language. It is the OMG standardized

general-purpose modelling language used in a very broad

scope that covers a large and diverse set of application

domains, including the field of software engineering and

object-oriented software-intensive systems.

V-Model V-model is one of the most common graphical representation

of a systems engineering lifecycle.

10

FIGURES

Figure 1.1. The relationship between MBSE and research object 15
Figure 2.1. Disciplines related to Systems Engineering [30] 21
Figure 2.2. V-model representing systems engineering lifecycle [32] 22
Figure 2.3. SysML diagram taxonomy [42] .. 23
Figure 2.4. Harmony for SE and Harmony for Embedded Systems [49] 26
Figure 2.5. MagicGrid mapping to SysML [46] .. 28
Figure 2.6. CHASSIS process overview diagram .. 33
Figure 2.7. Security risk management standard processes with their steps/phases . 39
Figure 2.8. “Plan–Do–Check–Act” (PDCA) model applied to information security

management system (ISMS) processes [87] ... 41
Figure 3.1. Chart presenting the number of members for systems engineering and

security engineering in the surveyed organizations .. 43
Figure 3.2. Chart presenting distribution of systems engineering activities 44
Figure 3.3. Chart of the question: “Does your organization conform to any security

standard for system design?” .. 44
Figure 3.4. Chart representing the benefits of integrating security activities into

MBSE model .. 45
Figure 3.5. Chart of the question: “Do you think that integrating security analysis

activities into MBSE would bring any of the following benefits?” 45
Figure 3.6. Chart representing MBSE techniques for validating/verifying security

model .. 46
Figure 4.1. SysML and UML profiles interrelationship in the context of OMG meta-

layer architecture [89] ... 48
Figure 4.2. The modelling environment extension for security in the context of

OMG meta-layer architecture from [91], extended by the author 49
Figure 4.3. The approach for developing the MBSEsec method 50
Figure 4.4. The security domain model ... 52
Figure 4.5. The MBSE security profile.. 53
Figure 4.6. The security domain model with techniques ... 55
Figure 4.7. The phases of the MBSEsec method ... 56
Figure 4.8. Traceability in the MBSEsec method .. 59
Figure 4.9. Recommended model structure by the MBSEsec method 62
Figure 4.10. Chart representing the importance of each MBSEsec method phase .. 64
Figure 4.11. Chart representing the importance of each MBSEsec method phase .. 64
Figure 4.12. Chart representing the importance of MBSE tools for running

combined Systems and Security Engineering analysis 65
Figure 4.13. Chart of the question: “Can you compare your efficiency when you

moved from document-based system engineering to model-based system

engineering?” .. 66
Figure 4.14. Chart of the question: “Did your work quality improve when you

moved from document-based system engineering to model-based system

engineering?” .. 66

11

Figure 4.15. Potential attack surfaces in the HSUV .. 69
Figure 4.16. HSUV Risk Assessment configuration ... 69
Figure 4.17. Security requirements for Power Control ECU 70
Figure 4.18. Assets for the Power Control Unit .. 70
Figure 4.19. Assets allocated to HSUV blocks in the Dependency matrix 71
Figure 4.20. The Misuse Case diagram reflecting a malicious diagnostic app usage

 .. 72
Figure 4.21. The attack scenario reflecting fault injection through a malicious app 73
Figure 4.22. The simulation of the attack scenario reflecting fault injection through

a malicious app ... 74
Figure 4.23. The Threat and Risk definition diagram for the Power Control ECU . 75
Figure 4.24. Security Objectives and Controls Structure for the Power Control Unit

 .. 76
Figure 4.25. The security control for preventing unauthorized access to ECU 77
Figure 4.26. Metric table that presents how many blocks are covered by assets 77
Figure 4.27. The change impact map for the “Power” requirement 78
Figure 4.28. The HSUV-Power Control ECU model validation results 80
Figure 4.29. Flight Status System context diagram ... 81
Figure 4.30. The assets of the “Incoming Data Processing” microservice and their

allocations ... 82
Figure 4.31. Flight Status misuse cases ... 83
Figure 4.32. Flight Status attack scenario .. 83
Figure 4.33. The Threat and Risk definition diagram for the Flight Status system . 84
Figure 4.34. The change impact map for the “Availability” requirement 85

12

TABLES

Table 2.1. Comparison of MBSE methodologies ... 29
Table 2.2. Security concepts mapped to modelling approaches 36
Table 2.3. Security techniques mapped to modelling approaches 37
Table 4.1. Requirement terminology by IETF RFC2119 used in the MBSEsec

method implementation [92] ... 49
Table 4.2. Stereotypes/elements that are available in the proposed MBSEsec

diagrams .. 56
Table 4.3. Questions and algorithms for quantitative model analysis 61
Table 4.4. Table representing the results of Kruskal-Wallis equality-of-populations

rank test ... 67
Table 4.5. Summary of the HSU-Power Control ECU model 78
Table 4.6. Traceability between different aspects in the HSUV model 80
Table 4.7. Summary of the Flight Status System model .. 85
Table 4.8. Traceability between different aspects in the Flight Status System model

 .. 86
Table 4.9. Summary of the research questions and answers to the research questions

 .. 87

13

1. INTRODUCTION

1.1. Motivation1

Modern systems among industries such as automotive, medical devices,

aerospace and defence are becoming extremely complex; therefore, traditional

engineering methods are not enough for their successful realization. The systems

have become more complex due to many factors, to name a few:

- Increased spectrum of technologies: complex systems have become cyber-

physical systems (CPS) and now depend upon the seamless integration of

computational algorithms and various physical components [1];

- Increased customer demands for more sophisticated systems and market or

military competition [2];

- Systems consist of many components interacting in a network structure, and

usually, these components are physically and functionally heterogeneous

[3].

The discipline of systems engineering (SE) was initiated and developed to

manage and unite work results of multidisciplinary engineering teams. The goal of

SE is a successful realization of systems with the focus on gathering customer needs

and defining required functionality early in the development cycle as well as

documenting requirements, then proceeding with design synthesis and system

validation [4]. Nowadays, organizations that cannot cope with systems complexity

have switched (or are switching) from a document-based approach to a model-based

approach in the SE activities. International Council on Systems Engineering

(INCOSE) emphasizes MBSE importance, and they envision that MBSE will

become a synonym of SE by 2025 [5]. The advantages of using models instead of

documents in SE include the following [6, 7, 8]:

- Increased systems engineering efficiency by:

o reusing existing projects or common components to support design

and technology evolution;

o enabling impact analysis of requirements changes;

o improving communication across a multidisciplinary team;

o enabling auto-generation of documentation.

- Reduced risk by early and iterative requirements validation and design

verification;

- Managed complexity.

There are a few methods that guide users on how to get all the MBSE benefits

when creating a system design model; sadly, almost all the analysed methods do not

include the security analysis at the early stage of system design. Conversely, there

are several tools and approaches that allow performing security analysis at the initial

phase of systems creation (e.g., Misuse Cases, Abuse Cases, Secure-Tropos,

CHASSIS); however, they are disjointed from the systems engineering [9, 10].

1 The material in the “Motivation” section was presented by Mažeika et al. in [88, 94].

14

Many researchers in their studies [11, 12, 13, 14] agree that there is a need to

identify and tackle security risks during the systems engineering lifecycle. Nguyen

et al. state that security objectives (such as confidentiality, integrity and availability)

should be considered together with the business logic very early, which is crucial in

engineering secure systems. Thus, MBSE could be a key helper because of the

opportunity to manipulate models on a higher abstraction level, possibility to tailor

generic modelling language (e.g., UML and SysML) with the security-related

concepts and performing reasoning with external analysis tools [12]. Nowadays, the

MBSE activity mostly focuses on the design phase, which is usually done by the

systems engineers. When developing complex systems, the security analysis is often

conducted in parallel with the design phase. Papke argues that security engineers and

systems engineers should work together, and a joint design process or framework is

needed in order to define security aspects in a common model [13].

The authors recognize that the biggest value of MBSE activities is gained

when system validation and verification are performed at the early phase of system

design, especially in terms of change of cost [15, 16]. In such case, the defects could

be fixed with less impact and the rework prevented in the later phases, thus

mitigating uncertainties to cost and schedule [16]. The same principles apply in the

security field: the risk identification and mitigation are the most effective and

maximize the return on investment if it is integrated into the design process and

utilized in the early stages [17].

1.2. Object and scope of the research

The research object of this work is the MBSE method for creating secure

complex systems formalized with the UML language.

The scope of the research encompasses the following fields:

- Systems Engineering (SE) and Model-Based Systems Engineering

(MBSE),

- Security Requirements Engineering,

- Modelling approaches and techniques for security analysis,

- Security Risk Management,

- Standards and methods for creating domain specific language and

formalizing the MBSE security method.

Figure 1.1. emphasizes that the proposed MBSE method for creating a secure

system is a part of system problem domain definition, which covers activities that

are performed at the early stage of the system design lifecycle (e.g., capturing

stakeholder needs, defining system context, modelling functional analysis, creating a

logical design, defining system parameters and specifying system requirements).

The problem domain definition is one of the main viewpoints for SE. Traditionally,

in MBSE methodologies and Enterprise Architecture Frameworks, there are two

viewpoints to manage the abstraction complexity: one to define a problem in order

to understand it, the other to provide one or multiple alternative solutions to solve it

[18].

15

Figure 1.1. The relationship between MBSE and research object

1.3. Problem statement and research questions

One of the most important challenges that organizations are trying to solve

while creating a new system is how to develop a secure system. Traditionally, the

system is treated as a secure system if the principles of Confidentiality, Integrity and

Availability are guaranteed.

Nowadays, the system security engineering field includes a variety of methods

and techniques for tackling security risks; however, they are disjointed from each

other as well as from SE. As MBSE serves as an umbrella for connecting various

disciplines, this disparity between security and SE becomes more evident. The

problem of this dissertation focuses on the lack of MBSE methods for tackling

security issues at the early stage of system creation.

This dissertation should give answers to the following research questions:

1. Is MBSE a suitable application for defining and managing security

requirements and conducting security analysis for complex cyber-physical

and software systems at the early stage of system creation?

2. Are the UML Profiles and MOF standard the right techniques and

standards for creating and formalizing the domain-specific language and

MBSE security method?

3. How can security requirement engineering and security analysis activities

be included in the MBSE process to design a secure system and leverage

MBSE advantages?

4. What are the security concepts that should be introduced in systems

modelling language in order to support security aspects during the early

stages of system development?

5. What domain specific extensions (e.g., stereotypes, diagrams, verification

rules) are needed for security analysis?

16

6. Can the automated MBSE tools, including but not limited to simulation,

verification and validation, change impact analysis, single source of truth,

be successfully applied in the security field by using the proposed method?

7. Does the proposed MBSE security method allow completely, concisely,

correctly and consistently model security aspects of both cyber-physical

and software systems in the CASE tool?

1.4. Aim and objectives

The main aim of this research is to find an effective way to solve the secure

system creation challenge at the early stage of system development by taking

advantage of Model-Based Systems Engineering.

Research tasks:

1. To analyse research literature, methods, applications and tools related to:

1.1. Systems Engineering (SE) and Model-Based Systems Engineering

(MBSE),

1.2. Security Requirements Engineering,

1.3. Modelling approaches and techniques for security analysis,

1.4. Security Risk Management,

1.5. Standards and methods for creating domain specific language and

formalizing the MBSE security method.

2. To develop a formalized MBSE method for creating secure complex

systems.

3. To perform an experiment for evaluating the suitability of the created

method and evaluate the research results.

1.5. Research methodology

The research methodology followed in this thesis is based on a traditional

design science research pattern [19]. The starting point was the evaluation of the

state-of-the-art of the existing literature in SE, MBSE, security requirements

engineering and security risk management fields. This initial evaluation of the state-

of-the-art literature analysis aimed to identify the limitations and potential needs in

SE, MBSE and security areas, align concepts and techniques and select the core

elements for the domain specific language and the MBSE security method.

Next, the feasibility survey was conducted in order to validate the business

needs before creating the MBSE security method.

The next chapter of “MBSE method for creating secure systems” started by

presenting the standards and tools that are needed to define domain-specific

language and formalize the MBSE security method (i.e., UML 2.5 Profiling

capability, MOF standard, DSML definition framework). Next, a classical modelling

language design approach where the key concepts of the domain should be

determined at first and then a new language could be created to support it was used

[20]. The security concepts that were identified in the literature analysis part were

mapped and represented in the domain model; then, UML profile was prepared

according to the domain model. The requirements of MBSE security method

implementation (which as well serves as guidelines) were defined in textual form by

17

following IETF RFC2119 recommendations.

 The evaluation part consisted of several iterations. Firstly, the qualitative

evaluation of the proposed MBSE security method was done by surveying experts

from the MBSE, engineering and academic fields. Then, two case studies were

modelled using the suggested MBSE security method in which the viability for

cyber-physical and software systems were presented. Finally, these case studies

were experimentally tested against four criteria: completeness, correctness,

conciseness and consistency.

1.6. Defended statements

The statements that were defended by the research are as follows:

1. MBSE is a suitable application for defining and managing security

requirements and conducting security analysis for complex cyber-physical

and software systems at the early stage of system creation.

2. The UML 2.5 Profiling capability and MOF standard are the right

techniques for creating and formalizing the domain-specific language and

MBSE security method.

3. The automated MBSE tools, including but not limited to simulation,

verification and validation, change impact analysis, single source of truth,

can be successfully applied in the security field by using the proposed

method.

4. All the artefacts that are mandatory for defining security-related

documentation (i.e., comparing with the ISO/IEC 27001:2013 standard)

can be correctly, concisely and consistently modelled in a model-based

environment with a suggested MBSE method for both cyber-physical and

software systems.

1.7. Major contributions and novelty

The scientific novelty and major contributions of this thesis are listed below:

1. The thesis introduces the security domain model that maps concepts and

techniques from the modelling approaches for security analysis and

security requirement engineering. The mapping and the security domain

model help security and system engineers to understand and compare wide

range security terms and techniques that could be used at the early stage of

system design.

2. It introduces a novel MBSE method for creating secure systems. It allows

specifying and analysing security aspect together with the system model

for complex systems. The suggested MBSE method covers the full spectra

of security phases, starting with security requirements, continuing on

assets, model threats and risks and finishing with control objectives and

controls. The use of model-based techniques ensures that the security and

system artefacts are aligned at the early phase of system design, and

MBSE benefits are extended to security engineer discipline.

3. The author’s suggested security method is one of the first methods in the

MBSE field at the time of publication.

18

1.8. Practical significance

The key practical significance of this research is the step towards linking

systems engineering and security engineering disciplines via model-based

environment. The expected practical results of the research:

- The MBSE method for creating secure systems is prepared and can be

used for designing any complex system with an MBSE CASE tool.

- The MBSEsec profile and DSML definition package was prepared with

the MagicDraw 19.0 CASE tool and can be installed as a plugin in any

compatible tool. Moreover, the requirements of the MBSE method

implementation unambiguously define how this method can be recreated

with any tool.

- The MBSEsec method provides guidelines on how to use and take

leverage of the MBSE benefits (e.g., model verification and simulation,

change impact analysis, traceability).

- The proposed MBSEsec method is aligned with the ISO/IEC 27001:2013

security standard which is used by many engineering organizations.

- The thesis presents two case studies for automotive and software system

domains.

- The practical significance was validated in two surveys: feasibility and

qualitative expert evaluation.

1.9. Scientific approval

Two articles presenting dissertation results were published in peer-reviewed

scientific journals that are indexed in the Clarivate Analytics Web of Science (CA

WoS) database. Moreover, the results of this research were presented in three

international conferences in Norway, Australia and Hungary and in one international

workshop in Lithuania. The corresponding publications were published in the

conference proceedings. A detailed list of publications is provided in Chapter 7 “List

of publications of Donatas Mažeika on the theme of dissertation”.

1.10. Structure of the dissertation

The dissertation consists of an introduction of the thesis, four main chapters,

general conclusions, references, a list of the author’s publications and appendixes.

Moreover, the terms and abbreviations, lists of figures and tables are presented at the

beginning of this work. The total scope of the thesis is 99 pages; it includes 48

figures and 12 tables.

Please note that figures and tables without citations are created by the author

of the dissertation.

19

2. ANALYSIS OF RELATED WORKS

Many researchers from all over the world and from Lithuania have been

exploring various aspects of SE and MBSE. Several leading research works were

developed or are under development in this field in the Department of Information

Systems (ISK) of Kaunas University of Technology in partnership with “Dassault

Systèmes” (previously known as “No Magic”) [21]. Even though the MBSE field is

widely researched and used in practice, there are not many attempts to standardize

how the security analysis can be conducted in a model-based environment within the

system engineering process.

Looking from a different perspective, the field of information and cyber

security is widely researched for the software engineering discipline. There are

several industry-acceptable methods to ensure secure software development

throughout all phases of the development process, including the waterfall-based

Microsoft Security Development Lifecycle (SDL) method [22] and the NIST

framework for Security Considerations [17] as well as the Microsoft Security

Development Lifecycle for Agile Development [23]. Herewith, the notable research

works were conducted by Lithuanian researchers with a special focus on

cryptography, application layer protocols and network communications. Kilčiauskas

et al. presented the research of authenticated key agreement protocol based on

provable secure cryptographic functions for e-banking systems [24]; Kajackas et al.

assessed cyber-attacks influence over an internet network [25]. Janulevičius

defended a doctoral dissertation on the security threat categorization taxonomy for

virtualized systems [26].

The following subsections present state-of-the-art analysis of related works

that reveal the general background information on the systems engineering research

field. This covers SE, MBSE, Systems Modelling Language (SysML) and the

comparison of leading MBSE methodologies. Next, the security requirements

engineering domain and the modelling approaches for security analysis are analysed.

There, the key security concepts and techniques are selected and aligned. Next, the

security risk management application is overviewed, and the ISO/IEC 27001:2013

information security standard is presented in greater detail.

2.1. Systems Engineering

The Systems Engineering (SE) discipline promotes a holistic approach to

design, analysis and management of complex engineering projects (e.g., in

automotive, aerospace, defense industries). SE started emerging in the 1990s as a

preferred approach for enabling engineers to cope with the complexity and manage

system projects that satisfy stakeholders' needs while limiting costs, development

time and other resources [4, 27].

When talking about system engineering, it is worth defining the system, as it is

the main subject of this discipline. A complex system can be generally defined as a

set of interrelated components that interact with each other to accomplish a desired

goal. It may combine hardware and software components, include processes, data

and humans. Organizations and researchers that are involved in the SE research field

20

give the following thoughts related to the system:

- The International Council on Systems Engineering (INCOSE) defines a

system as “a construct or collection of different elements that together

produce results not obtainable by the elements alone. The elements, or

parts, can include people, hardware, software, facilities, policies, and

documents; that is, all things required to produce systems-level results”

[4].

- IEEE Reliability Society has derived the following definition: “a system is

a group of interacting elements (or subsystems) having an internal

structure which links them into a unified whole. The boundary of a system

is to be defined, as well as the nature of the internal structure linking its

elements (physical, logical, etc.). Its essential properties are autonomy,

coherence, permanence, and organization” [28].

- The ISO/IEC 15288:2015 systems engineering standard states that system

is: “an integrated composite that consists of one or more of the processes,

hardware, software, facilities, and people that provides a capability to

satisfy a stated need or objective” [29].

One of the most known and industry-approved definitions of the SE discipline

is provided by INCOSE: “Systems Engineering is an interdisciplinary approach and

means to enable the realization of successful systems. It is focused on defining

customer needs and required functionality early in the development cycle,

documenting requirements, and then proceeding with design synthesis and system

validation while considering the complete problem: operations, cost and schedule,

performance, training and support, test, manufacturing, and disposal” [4]. SE is a

multidisciplinary approach, and it combines and integrates multiple disciplines, as

illustrated in Figure 2.1. The central role for the SE discipline is a systems engineer

who usually oversees the whole perspective of the system; gathers, clarifies and

specifies requirements; performs the parametric analysis and trade-offs; checks if

different components can be integrated (interfaces compatibility) and takes early

action to avoid defects [4].

21

Figure 2.1. Disciplines related to Systems Engineering [30]

The SE lifecycle and its main steps are often graphically represented using the

V-Model [31, 32]. The comprehensive example of V-Model by [32] is presented in

Figure 2.2. There are several different versions of the V-Model; however, most of

them share core similarities, which can be summarized as follows:

- The SE engineering process starts with a feasibility study and concept

exploration. Usually, this step includes gathering the needs of the

stakeholders in order to confirm what are the goals, objectives and key

requirements of the system under design.

- Next, the stakeholder needs are refined and converted into functional and

non-functional system requirements.

- In the next steps, the system logical design is prepared according to the

requirements from the previous step. Most often, the high-level logical

design is created at first, and the more detailed solution design is created

afterwards.

- In the last step of the left-hand side, the implementation details for

software and hardware components are specified.

- The right-hand side of the V-model is dedicated to testing, integration,

validation and verification of the components, subsystems and systems

that are defined in each stage on the left-hand side of the V-model.

22

Figure 2.2. V-model representing systems engineering lifecycle [32]

Initially, SE relied mostly on document-based artefacts, i.e., requirements

documents, system specifications, schematic block diagrams, interface control

documentation, system architecture descriptions. This information is frequently

maintained by different persons and captured in many different files and formats,

including text, non-standard schemes and spreadsheets. As a result, the document-

based approach may lack precision: there could be inconsistencies from one artefact

to another. Moreover, it leads to the difficulties of maintaining and reusing the

information [33]. All these challenges are trying to be solved by Model-Based

Systems Engineering, which is analysed in the next section.

2.2. Model-Based Systems Engineering

The Model-Based Systems Engineering (MBSE) methodology leverages

models for the whole spectra of system engineering activities (i.e., requirements,

logical architecture, system behaviour, integrations, validation and verification) and

makes the model a central figure. The change from document-based to model-based

approach in SE can be compared with the paradigm shift that happened in

engineering and industrial design industries with Computer-aided engineering

(CAE) and Computer-aided design (CAD) software [5]. Moreover, this

transformation enables organizations to move from waterfall/linear SE approach to

more agile methods [34].

INCOSE defines MBSE as “the formalized application of modeling to support

system requirements, design, analysis, verification and validation activities

beginning in the conceptual design phase and continuing throughout development

and later life cycle phases” [35]. Both SE and MBSE definitions agree that systems

engineering should support requirements, design, analysis and validation activities;

however, the MBSE definition emphasizes that this support is realized by modelling.

The MBSE methodology promises to ease systems engineers' challenges in

communication across different engineering disciplines, especially in terms of

23

completeness and consistency [36]. In order to solve these challenges and

successfully adapt the MBSE, three aspects should be mastered: common SE

language, method and CASE tool [18].

Language. MBSE was accelerated with the effective usage of Unified

Modelling Language (UML) [37] and the practice of Model-Driven Architecture

(MDA) [38]. Prior to this, there were many attempts to apply the UML language for

SE; however, these tries were not successful [39] because of complexity of

language, and it was non-natural for solving SE domain-specific problems [40]. Due

to these reasons, the OMG group, in partnership with INCOSE, started working on

domain-specific language creation in 2001, and the first version of the Systems

Modelling Language (SysML) was released in 2006 [41].

SysML is based on UML 2.0, and it provides a focused set of UML diagrams

and presents several new or modified diagrams for modelling complex systems that

include software, hardware, procedures, data and other system components [34]. All

the SysML diagrams are presented in Figure 2.3. As SysML is a profile of UML, it

can be integrated with other OMG UML-based standards, such as Unified

Architecture Framework (UAF), Object Constraint Language (OCL), executable

UML models (fUML), etc.

One remark about SysML and UML should be noted: these languages are

visual modelling languages that are not depended to any SE methodology [34].

Figure 2.3. SysML diagram taxonomy [42]

CASE tool. All the MBSE benefits are achievable only with the proper

modelling tool. Firstly, the MBSE should be carried out with a modelling tool in

which model elements are created underneath and represented in different views, not

with diagramming/drawing tool. Secondly, the tool should support the key MBSE

capabilities, such as one source of truth, automated document generation,

simulation, model reuse, change impact analysis, consistency and completeness

check. There are many CASE tools for SE with their own strengths and weaknesses.

This dissertation is carried out using the MagicDraw toolset. The benefits of using

this tool were presented in several researches [43, 36, 44].

24

Method. System modelling language (i.e., SysML) is not sufficient to run the

MBSE project successfully: it provides only semantics of the language but not how

to use it practically and methodically [39]. The language must be combined with a

method or methodology and conducted with the proper CASE tool in order to

complete the MBSE project. The next section presents the analysis of MBSE

methodologies.

2.3. Model-Based System Engineering methodologies

This section provides the analysis and comparison of the leading MBSE

methodologies. The MBSE methodology should be understood as the set of

processes, methods and tools used to support the discipline of SE in a model-based

way [34].

The starting point for selecting key MBSE methodologies used among systems

engineering practitioners is the INCOSE repository of MBSE methodologies [45]

and comprehensive survey of MBSE methodologies conducted by Estefan [34].

Moreover, a new approach of MagicGrid is included in this analysis, as it is a

synthesis of widely known MBSE methodologies, and it is successfully applied in

real-world projects [46].

The six MBSE methodologies are looked over in this section:

1. Object-Oriented Systems Engineering Methodology (OOSEM),

2. IBM Harmony methodology for SE,

3. Weilkiens Systems Modelling Process (SYSMOD),

4. NASA JPL State Analysis,

5. Vitech MBSE Methodology,

6. MagicGrid (also known as MBSE Grid).

A review of each methodology presents the main and additional capabilities,

looks if it is suitable for the early phase of system development, checks if it supports

security analysis, highlights gaps, etc.

2.3.1. Object-Oriented Systems Engineering Methodology

The Object-Oriented Systems Engineering Methodology (OOSEM) was origi-

nally created by system engineering practitioners from Lockheed Martin and the

Systems and Software consortium [47]. OOSEM combines object-oriented software

engineering principles, a model-based system design approach and tradition-

al/waterfall-style system engineering practices. OOSEM is based on UML and

SysML languages.

This methodology suggests four main activities for system engineers:

1. Analyse and capture stakeholder needs and system requirements;

2. Model logical system design;

3. Define allocated architecture;

4. Validate and verify the system.

Additionally, the methodology provides guidelines for optimizing and

evaluating system architecture.

The OOSEM methodology is in compliance with standard ISO/IEC-15288,

which is dedicated to aligning the procedures used by any organization or project

25

throughout the full lifecycle of a system [48]. System Engineering processes in the

ISO-152888 standard are organised into five categories: Agreement, Enterprise, Pro-

ject, Technical and Special. The steps from the ISO-15288 standard helps to identify

the sequence of the processes needed to deliver the essential products of the system

development.

2.3.2. IBM Harmony methodology for SE

The IBM Harmony methodology for SE (Harmony-SE) is based on the ration-

al unified process (RUP) and uses the SysML diagrams. The suggested SE activities

follow the classical system engineering “V” diagram. The left side of the “V” de-

scribes the top-down design flow, while the right-hand side shows the bottom-up in-

tegration phases from unit test to the final system acceptance [49].

The Harmony-SE workflow has three main phases:

1. Requirements analysis,

2. System functional analysis,

3. Design synthesis.

The MBSE techniques that support the requirements analysis phase are SysML

Requirements diagram and Use Cases model. In the system functional analysis

phase, each use case is transformed into an executable model, and the related system

requirements are verified using model execution. The main executable models in the

design synthesis phase are Architectural Analysis Model and System Architecture

Model.

The Harmony-SE methodology has the approach on how the MBSE model can

be integrated with the Software Implementation model. The principal diagram of

such integration is presented in Figure 2.4.

In addition, Harmony-SE supports dependability analysis as a parallel activity

to requirements and system design. This is an optional activity (e.g., the system un-

der design is not needed to be high-reliability, safety-critical or security-sensitive

system), and it should ensure that the system under design meets the security, relia-

bility and safety needs of the stakeholder. There are the IBM Rhapsody profiles for

Harmony-SE for defining dependability domain; however, its capabilities may be

limited if comparing to specialized tools [50]. As it is presented in [51], the UML

Security Analysis profile has a Security Analysis diagram, which is like a Fault Tree

Analysis but for security rather than safety. It allows defining dependencies between

assets, vulnerabilities, attacks and security violations.

26

Figure 2.4. Harmony for SE and Harmony for Embedded Systems [49]

2.3.3. Weilkiens Systems Modelling Process

The Weilkiens Systems Modelling Process (SYSMOD) provides process defi-

nition, guidelines and examples on how to define requirements and system architec-

ture with the SysML language [52]. The main methodology activities are:

1. Identify stakeholders;

2. Elicit requirements;

3. Define the system context;

4. Analyse requirements, e.g., with the Use Case diagram;

5. Define domain model;

6. Define the system architecture on different levels (functional, logical,

physical).

Starting with the description of the system context, the needs of the system are

captured and modelled. The use case specification allows clarifying requirements

and working scenarios. The processes of system are created in parallel. Finally, the

internal structure of the system is created, parameters are defined, and behaviour is

modelled.

SYSMOD provides guidelines for additional activities too, e.g., for functional

architectures or variant modelling.

2.3.4. NASA JPL State Analysis

The JPL state analysis methodology was developed by the California Institute

of Technology Jet Propulsion Laboratory (JPL). It is a formal methodology, which is

based on a state control architecture where state is defined to be “a representation of

27

the momentary condition of an evolving system,” and models describe how state

evolves [53].

The methodology provides three main activities for state modelling:

1. Modelling behaviour according to the state variables and relationships be-

tween them;

2. Designing state-based software (methods to achieve objectives);

3. Engineering goal-directed operations (preparing detailed scenarios for

mission objectives).

State and models provide instruments for designing a system, predicting a fu-

ture state, controlling it towards a desired state and formally assessing performance.

State analysis should be managed in the State Analysis SQL database [34]. Alterna-

tively, the state analysis methodology can be conducted with the SysML extension

on the MBSE modelling tool [54].

2.3.5. Vitech MBSE Methodology

The Vitech MBSE Methodology uses System Definition Language (SDL), and

it allows modelling the syntax (structure) and semantics (meaning) of a complex

system. The system model can be specified in the form of schema or ontology. The

SDL language inherits many diagrams and constructs from the traditional SE arte-

facts, e.g., Enhanced Function Flow Block Diagrams (EFFBDs), N2 charts, State-

transition diagrams [55].

The main domains of Vitech methodology are listed below:

1. Process Domain (SE activities),

2. Source Requirements Domain,

3. Behaviour Domain,

4. V&V Domain,

5. Architecture Domain.

The methodology suggests using a linear strict process known as “Onion Mod-

el” to work incrementally and increase levels of detail during the system specifica-

tion process. The engineers must fully complete a layer and only then move to the

next one.

2.3.6. MagicGrid

The MagicGrid approach (also known as MBSE Grid) was originally proposed

in [46], where the process for problem definition layer, which is essential at the early

phase of system development, was described. The follow-up article presented guide-

lines for the solution layer; moreover, it introduced traceability among views [18].

The MagicGrid approach is influenced by the MBSE adoption projects from

the transportation and defence industries. The approach is based on the framework

organized in a matrix view (see Figure 2.5.), and it defines the modelling process,

reveals what model artefacts should be produced in each step of system specification

and design and explains how to manage traceability relationships (both horizontal

and vertical).

The approach guides how to specify four main aspects of systems engineering

in different layers of abstraction:

28

1. Requirements (stakeholder needs, system and component requirements);

2. Behaviour (use cases, functional analysis, component behaviour);

3. Structure (system context, logical subsystems communication, component

behaviour);

4. Parametrics (measurements of effectiveness, component parameters).

The layers of the abstraction are grouped into two viewpoints, i.e., Problem

and Solution. The problem domain is as well divided into two sub-viewpoints, i.e.,

Black Box and Whitebox definitions.

MagicGrid is fully compatible with the SysML language. It is oriented to the

creation of a system model; however, there are plans to extend it and include support

of system variants, engineering analysis and verification & validation.

Figure 2.5. MagicGrid mapping to SysML [46]

2.3.7. Comparison of MBSE methodologies

This section provides the comparison and summary of the analysed MBSE

methodologies. All the analysed methodologies were evaluated against seven criteria

(see Table 2.1.).

The first criterion checks if MBSE methodology suggests activities for an ear-

ly phase of the system development lifecycle (e.g., defining stakeholder needs, sys-

tem requirements, use cases, functional analysis). All the methodologies, except JPL

State Analysis, offer such capability. The JPL State Analysis methodology originally

was dedicated to formally define complex control systems, leaving aside require-

ments and other early-phase activities.

The second item looks at what additional activities can be done with the se-

lected MBSE methodology. Vitech MBSE and MagicGrid suggest activities only for

SE in a current version. JPL State Analysis provides tools for the formal system val-

idation and verification. Other methodologies support activities that are closely re-

lated to SE, such as variant modelling, software implementation model, architecture

optimization.

The third item presents the base modelling language. Most of the compared

methodologies are based on SysML/UML, which is a de facto language for SE [34].

29

JPL State Analysis uses the SQL language, which is designed to manage data held in

a relational database management system. Moreover, JPL State analysis has a map-

ping with SysML concepts [54]. The Vitech MBSE methodology is based on the

proprietary SDL language.

The fourth and fifth criteria look if the modelling methodology supports itera-

tive/agile cycles and provides validation/verification tools. This can help mitigate

defects early in the system design lifecycle by testing and validating system models

frequently and quickly getting feedback and needed decisions. All the methodolo-

gies, except SYSMOD, have validation and verification activities; 4 of 6 methodol-

ogies support the iterative process.

The sixth question asked if the security analysis is supported by the analysed

MBSE methodology. Only IBM Harmony-SE has such an option. IBM Harmony-SE

has optional profiles for the representation and analysis of the aspects of dependabil-

ity (safety, reliability and security); however, as it is mentioned in [50], the special-

ized tools are likely to have more capability in those domains.

The last criterion looks if the methodology is based on standard/process.

OOSEM follows the ISO/IEC 15288 standard for SE lifecycle processes. This

standard provides a framework of processes that should be applied to a system

throughout its full lifecycle, including requirements specification, architectural de-

sign, implementation and verification [48]. IBM Harmony-SE follows the RUP pro-

cess, which as well covers the full system lifecycle and provides disciplined guide-

lines for the roles, work products and tasks [34]. The JPL State Analysis methodolo-

gy is based on the formal State Analysis process, which extends fundamental con-

cepts from control theory and software architecture to aid in the design of complex

control systems [54]. Other methodologies have not declared any dependency on the

standard/process.

Table 2.1. Comparison of MBSE methodologies

OOSEM

Methodology

IBM

Harmony

SE

SYSMOD

Process

JPL State

Analysis

Vitech

MBSE

MagicGrid

Approach

Provides

activities

for early

phase of

system de-

velopment

Yes Yes Yes No Yes Yes

30

OOSEM

Methodology

IBM

Harmony

SE

SYSMOD

Process

JPL State

Analysis

Vitech

MBSE

MagicGrid

Approach

Suggests

additional

activities

(other than

SE)

Evaluation

and optimi-

zation of

system ar-

chitectures

Integra-

tion with

Software

Imple-

mentation

Model

Variant

modelling;

Functional

Architec-

tures

System

state pre-

diction;

Perfor-

mance as-

sessment;

embedded

software

architec-

ture

No Not in a

current

version

Modelling

language

UML and

SysML
SysML SysML SQL;

additional-

ly SysML

System Def-

inition Lan-

guage

(SDL)

SysML

Supports

iterative

process

Yes Yes Yes Yes No No

Validation

and verifi-

cation

Yes Yes Not in a cur-

rent version
Yes Yes Yes

Supports

security

analysis

No Yes No No No No

Based on

process/

standard

Yes,

ISO/IEC

15288

Yes, Ra-

tional

Unified

Process

(RUP)

No Yes, State

Analysis

process

No No

2.4. Security Requirements Engineering

This section presents an overview of Security Requirements Engineering. The

Security Requirements Engineering domain encompasses methods, processes,

techniques and norms for tackling secure systems creation activity during the early

stages of the system development cycle [56]. Many approaches and methods for

performing security requirements engineering have been proposed in literature.

Some of the approaches provide guidance for the security-related activities (e.g.,

SQUARE [57] and CLASP [58]), while some of them operationalize security

standards (e.g., SREP is based on ISO/IEC 17799:2005 [59], and CORAS is based

on ISO 31000 [60]). A detailed comparison of security requirements engineering

methods was provided by Fabian et al. [61] and Mellado et al. [56].

The security requirements engineering process includes traditional requirement

engineering activities such as requirements elicitation, specification and analysis.

The final purpose of security requirements engineering is to prevent harm in the real

31

world by considering security requirements as constraints upon functional

requirements [62]. The most recurring term is “security requirement”, and it is

worthwhile to look at how this term is treated by different authors:

1. Dubois et al. characterize security requirement as a condition over the

phenomena of the environment that system stakeholders wish to make true

by designing the system in order to mitigate risks [9].

2. Fabian states that the security requirement is a detailed refinement of one

or more security goals, whereas the security goal refers to a part of the

CIA (confidentiality, integrity and availability) model [61].

3. Salini and Kanmani agree that security requirements can be treated as a

constraint on the functions of the system, and these constraints

operationalize one or more security goals [62].

Respectively, in this thesis, security requirement can be considered as a more

detailed statement of security goal. Security goals are most often classified into

confidentiality, integrity and availability goals [61]. The ISO/IEC 13335-1:2004

standard presents the industry-proven examples of each goal [63]:

• Confidentiality is the characteristic that information is not made available

or disclosed to unauthorized users, entities or external systems.

• Integrity is the characteristic of safeguarding the completeness and

accuracy of assets.

• Availability is the characteristic of being accessible and usable upon

demand by an authorized entity.

In the next section, it is presented how security requirement engineering is

interpreted and refined in various modelling approaches for security analysis.

One remark about security and safety requirements engineering should be

noted. Even though security and safety disciplines have many similarities (e.g., both

are protecting assets by creating secure/safe conditions [64]), the core differences

exist too [65]:

• The origin of risk: security focuses on threats (e.g., attacker hacks the

aircraft in-flight entertainment system and overrides the security software),

while safety considers hazards (e.g., landing gear of the aircraft fails to

extend).

• The nature of the consequences: unmanaged security risks could cause

harm to the system itself or to its environment. The consequences of safety

risks are related to the system environment only.

In this research, only security techniques and methodologies are further

analysed, except those that cover both safety and security areas (e.g., CHASSIS).

2.5. Modelling Approaches for Security Analysis

This section presents a state-of-the-art analysis of modelling approaches and

techniques for security analysis and security requirement engineering2. The whole

2 An analysis of UAF, CHASSIS, SysML Sec, and UML Sec methods was presented

by Mažeika et al. in [88, 94].

32

security requirements engineering domain is overviewed in the previous section, and

there, the subset of this domain is analysed in more detail.

The baseline for selecting the most popular modelling approaches and

techniques for security analysis was a conceptual framework for security

requirements engineering created by Fabian et al. [61] and a comprehensive survey

from Kriaa et al [66]. The following graphical modelling approaches that could be

used at the early stage of system design and integrated into the MBSE process are

selected for further analysis:

1. Unified Architecture Framework (UAF),

2. CHASSIS Method,

3. SysML Sec,

4. UML Sec,

5. CORAS.

The formal security methods based on mathematical techniques or semiformal

approaches that are based on a different graphical form than UML/SysML (e.g.,

Petri nets and Bayesian belief network) are not included into the research scope

because different notation may include additional complexity to the MBSE model,

and formal methods are usually implemented in the later phase. Moreover, the

techniques used in other methods (e.g., Misuse cases in CHASSIS) are not

separately analysed in this section.

A review of each security approach presents the principles and capabilities,

identifies the key security concepts and main techniques and looks at how the

approach can be integrated into the MBSE process.

2.5.1. Unified Architecture Framework (UAF)

UAF is an enterprise architecture framework (EAF) created by the Object

Management Group (OMG) [67]. The UAF framework unifies existing military ar-

chitecture frameworks (such as MoDAF, DoDAF and NAF), and, unlike the latter, it

is applicable to industrial and commercial applications as well [68, 69]. Besides the

demilitarization and unification of military frameworks, UAF has an additional secu-

rity domain [70]. The security domain enables users to identify the security con-

straints and capture information assurance properties that exist during communica-

tion between resources and operational performers [67]. These information-

assurance properties are aligned to NIST/DOD standards that are the base for the

unified information security framework for the entire US federal government [71,

72].

UAF could be used throughout the entire system life cycle, starting with the

initial concept, requirements, design specification phases, continuing with the im-

plementation, deployment phases and finishing with operations, maintenance and

disposal phases. The UAF architecture models allow users to model the complex re-

lationships that exist between organizations, systems and systems-of-systems, and

they as well enable the analysis of these systems to ensure that they meet the stake-

holder’s needs. The framework enables the modelling of security as well as includ-

ing cybersecurity controls [67, 68].

33

The UAF syntax is based upon a combination and extension of UML and

SysML elements and diagrams. For example, the security processes view represents

the security controls that are necessary to protect organizations, systems and infor-

mation during processing. The recommended implementation for these security con-

trols is the enhanced SysML Activity diagram [67].

The key security concepts used in UAF are security constraint, security

property, security assets, security controls, risk and security impact property,

probability.

The main techniques for defining security aspects are security constraints defi-

nition, risk definition, security processes definition, security structure/assets defini-

tion.

The integration to MBSE process: UAF supports the capability to model en-

terprise architecture (strategy, operational, personnel and resources, project and se-

curity) and, optionally, trace it with the systems-level model(s), which is modelled

with SysML or UML languages.

2.5.2. CHASSIS Method

CHASSIS is a mnemonic acronym for the combined harm assessment of safe-

ty and security for information systems. The CHASSIS method allows identifying

both security and safety aspects and is based on UML notation [73]. The main

CHASSIS techniques are UML-based diagrams as well as traditional text-based

techniques such as Hazard and Operability study (HAZOP) or security requirements

specification [10, 74]. Figure 2.6. presents an overview of CHASSIS method.

Figure 2.6. CHASSIS process overview diagram

There are three main steps in the CHASSIS method:

34

1. Eliciting functional requirements,

2. Eliciting safety/security requirements,

3. Specifying safety/security requirements.

The first two steps rely on creating and analysing UML-based diagrams (use

case, sequence, misuse case, misuse sequence). Misuse case technique extends the

UML use case diagram with the additional elements of misuse case and misuser.

These concepts allow defining attackers and their threats to the system of interest.

Moreover, two supplementary relations of threatens and mitigates allow security en-

gineers to specify which use case mitigates misuse case or which misuse case threat-

ens the use case. The misuse sequence diagram can be used to represent possible in-

teractions between attacker and system that are arranged in time sequence [73].

The third steps suggest conducting results in the HAZOP table and in securi-

ty/safety requirements specification [73].

The key security concepts used in CHASSIS are attack, attacker, threat,

security requirement, risk and weakness.

The main techniques for defining security aspects are misuse cases, misuse

case sequence diagram, HAZOP, security requirements.

Integration to MBSE process: the CHASSIS method presents a process

definition, not a dedicated UML/SysML profile. As the CHASSIS method suggests

using UML-based diagrams, the principles of it can be adapted to the MBSE

process.

2.5.3. SysML Sec

SysML Sec is a model-driven engineering environment, which presents

extended SysML diagrams for security risks as well as the methodology for creating

secure real-time embedded systems. This methodology brings forward semi-formal

specifications of both security and safety features and properties at various

development cycle phases [75].

The SysML Sec methodology consists of three main phases [75]:

1. System analysis (based on Y-chart approach for embedded systems),

2. System design (based on V-model for software development),

3. System validation (based on model transformation into formal specifica-

tions).

The analysis phase covers the definition of security requirements and attack

scenarios and serves as an identification of the main functions and candidate hard-

ware architecture. In the system design stage, security requirements are refined with

security properties, and security-related functions are defined. The validation phase

allows users to formally assess whether security properties are verified. If the model

is too large to be verified, model-to-code transformations are used to perform securi-

ty tests [75, 76].

In the SysML Sec methodology, security requirements are based on an extend-

ed SysML Requirement diagram. A new security requirement stereotype with the

property of Kind (e.g., confidentiality, access control, integrity, freshness) allows

users to distinguish security requirements from functional and non-functional re-

quirements. Attack trees can be specified with a customized SysML Parametric dia-

35

gram. A Formal Dolev-Yao attacker model (for describing attacks on the protocols

deployed between the components of the embedded system model) can be modelled

with extended SysML Block and State Machine diagrams [75].

The key security concepts used in SysML Sec are assets, security requirement,

security property, security-related function and threat.

The main techniques for defining security aspects are requirement diagrams,

attack scenarios, Dolev–Yao attacker model.

Integration to MBSE process: SysML Sec was created to support all

methodological stages of the design and development of embedded real-time

systems. As SysML Sec uses extended SysML diagrams for capturing security

concerns, the principles of it can be adapted to the MBSE process.

2.5.4. UML Sec

The UML Sec approach enables a definition of security requirements for a

system under analysis with a lightweight extension of UML. As UML Sec is a

lightweight extension, it does not introduce any new diagrams but provides a set of

stereotypes (with tag definitions) and constraints. Security-related stereotypes allow

users to specify security requirements and attack/failure scenarios with standard

UML diagrams (e.g., use case, activity and sequence diagrams). The custom

constraints written in OCL (Object Constraint Language) help to verify the model

with formal semantics [14, 77]. In addition, the UML Sec method can be integrated

with the Goal-Driven Security Requirements Engineering methodology in order to

have a structured framework for secure software systems development [78].

The key security concepts used in UML Sec are security requirement, security

property, attacker and attack.

The main techniques for defining security aspects are security requirements,

failure/attack scenarios.

Integration to MBSE process: UML Sec is a lightweight extension for UML;

thus, the security-related stereotypes can be used within SysML models; however,

no default traceability or mapping with SE is defined.

2.5.5. CORAS

CORAS is a method for security risk analysis, which incorporates

documentation framework, various risk assessment techniques and process

description [79]. It is based on the ISO 31000 standard. This method suggests using

a customized language, which is inspired by UML to model assets, risks and threats.

The CORAS method consists of 8 steps for conducting security analysis [60]:

1. Initial preparation for security risk analysis;

2. The meeting between analyst and customer to clarify the security

goals/requirements;

3. Identification of target, scope and main assets;

4. Approval of target, scope and main assets;

5. The security risk identification;

6. The risk level estimation;

36

7. The decision on which security risks are acceptable and which shall be

further analysed for possible treatment;

8. Treatment identification.

The key security concepts used in CORAS are asset, security goal, risk, threat,

attack, probability and vulnerability.

The main techniques for defining security aspects are security requirements,

asset relationship diagram, threat diagram, HAZOP.

Integration to MBSE process: CORAS uses custom security diagrams inspired

by the UML language; however, no default traceability or mapping with SE is

defined.

2.5.6. Security concepts alignment

This section is dedicated to aligning all the key concepts from the analysed

modelling approaches for security analysis. Table 2.2. presents security concepts

with definitions, synonyms and their occurrence in the analysed modelling

approaches (“+” indicates that the corresponding concept is used in modelling

approach and “-” means that it is not relevant).

Table 2.2. Security concepts mapped to modelling approaches

U

A

F

C

H

A

S

S

I

S

S

y

s

M

L

S

e

c

U

M

L

S

e

c

C

O

R

A

S

Definition Synonyms

Asset + + + - + Elements that can be considered as a subject

for security analysis [67]

Something in the system and/or its environ-

ment to be protected from negative conse-

quences [73]

Software asset,

system asset,

data asset

Security

constraint

+ + + + + A type of rule that captures a formal statement

to define security laws, regulations, guidance

and policies [67]

Security re-

quirement, secu-

rity goal

Security

control

+ - + - + A safeguard or countermeasure prescribed for

an information system or an organization de-

signed to protect the confidentiality, integrity

and availability of the asset’s information and

to meet a set of defined security requirements

[67]

Security activity,

safeguard,

countermeasure,

security-related

function

Security

property

+ - + + + Property or constraint on a system asset that

characterizes their security need [67]

Information-

assurance prop-

erty

Risk

+ + + - + A statement of the impact of an event on as-

sets [67]

-

Risk impact

+ + + - - The potential impact on system due to a spe-

cific reason (availability, integrity and confi-

Harm,

consequence,

37

U

A

F

C

H

A

S

S

I

S

S

y

s

M

L

S

e

c

U

M

L

S

e

c

C

O

R

A

S

Definition Synonyms

dentiality) [67] security impact

property

Probability + - - - + The likelihood of risk occurrence [67] Likelihood

Vulnerabil-

ity

+ + - + + An internal fault that enables an external fault

to harm the system [73]

Weakness,

security con-

straint (in UAF)

Attacker - + + + + Someone or something carrying out an attack

for altering the system’s functionality or per-

formance or accessing confidential infor-

mation [73]

Intruder

Threat + + + + + Potential attack that targets system assets and

that may lead to harm to the assets [9]

An action carried out to harm system [73]

Attack

2.5.7. Security techniques mapping

This section introduces the mapping of the main techniques from the analysed

modelling approaches for security analysis. Table 2.3. presents which security-

related techniques overlap between analysed modelling approaches, how these

techniques can be implemented in the SysML language and what is the purpose of

each technique (“+” indicates that the corresponding technique is used in the

modelling approach, and “-” means that it is not relevant).

Table 2.3. Security techniques mapped to modelling approaches

U

A

F

C

H

A

S

S

I

S

S

y

s

M

L

S

e

c

U

M

L

S

e

c

C

O

R

A

S

Implementation in SysML Purpose

Security Require-

ments Definition

+ + + + + SysML Requirement diagram,

SysML Use Case diagram

Captures functional and

non-functional security

requirements

Security Processes

Definition

+ - - - - SysML Activity Diagram

Identifies security con-

trols

Asset Structure

Definition

+ - - - + SysML Block Definition Dia-

gram,

SysML Internal Block Dia-

gram

Defines assets and allo-

cations

38

U

A

F

C

H

A

S

S

I

S

S

y

s

M

L

S

e

c

U

M

L

S

e

c

C

O

R

A

S

Implementation in SysML Purpose

Security Risk Defi-

nition

+ + - - + SysML Block Definition Dia-

gram

Identifies and summa-

rizes risks, risk impact,

probability, etc.

Misuse Cases - + - - - SysML Use Case Diagram

Identifies threats and at-

tackers

Misuse Case Se-

quence

- + - - - SysML Sequence Diagram Defines the attack se-

quence during an intru-

sion

HAZOP - + - - + Tabular Format Summarizes risk and se-

curity requirements-

related data

Attack/Threat

Scenario

- + + + + SysML Activity Diagram,

SysML Parametric Diagram

Describes attack

steps/actions

Dolev–Yao Attack-

er Model

- - - + - SysML Block and State Ma-

chine Diagrams

Formally defines poten-

tial actions by an attack-

er

2.6. Security Risk Management

Security Risk Management can be defined “as the systematic application of

management policies, procedures, and practices to the task of establishing the

context, identifying, analyzing, evaluating, treating, monitoring, and communicating

security risks” [80]. The security requirements engineering and security approaches

that were analysed in previous sections focus on how to design and develop a secure

system; meanwhile, security risk management covers a wider spectrum of domains

that includes management of information and cybersecurity risks in an

organizational context.

Comprehensive ontology for the IS security risk management was defined by

Dubois et al. [9]; moreover, there was an attempt to investigate how information

security risk management could help in the task of engineering a secure system [81].

There are many various security risk management standards, and in this thesis,

several widely used standards are presented.

NIST 800-30. The goal of this standard is to provide guidance for conducting

risk assessment activities with a special focus on the U.S. federal information

systems and organizations. The NIST 800-30 guidance uses the key risk factors of

threats, vulnerabilities, impact and the likelihood of threat exploitation of

weaknesses in information systems to help security engineers understand and assess

the current information security risks to organization and information technology

infrastructures [82].

39

ISO/IEC 27005:2018. This standard provides guidelines for information

security risk management in an organization, and it is oriented to assist the

implementation of information security based on the asset, threat and vulnerability

risk identification method. ISO/IEC 27005 is part of a wider ISO/IEC 27000 family

of information security standards [83].

ISO 31000:2018. The standard provides guidelines on managing any type of

risk faced by the organizations. It is neither industry nor sector specific, and it can be

used throughout the life of the organization and can be applied to any activity,

including decision-making at all levels. One of the main goals of this standard is to

ensure that risk management process is efficient, effective and consistent [84].

OCTAVE (Operationally Critical Threat, Asset, and Vulnerability

Evaluation). It is a risk management framework for capturing and analysing threat-

related information, producing a protection strategy and mitigation plans based on

the organization’s security risks [85].

Figure 2.7. presents the security risk management standard processes with

their steps or phases to give an overview of the similarities and differences of these

standards.

Figure 2.7. Security risk management standard processes with their steps/phases

40

2.7. Information Security Management System3

Information security management system (ISMS) helps security engineers to

define and manage controls that an organization needs to implement to ensure that it

is systematically safeguarding the confidentiality, availability and integrity of assets

[86]. In this thesis, a well-established ISO/IEC 27001:2013 Security Standard is

selected for ensuring that the risks would be systematically governed for the system

under design.

The ISO/IEC 27001:2013 standard by the International Organization for

Standardization (ISO) and the International Electrotechnical Commission (IEC)

provides specific requirements for establishing, implementing, operating,

monitoring, reviewing, maintaining and improving ISMS [87]. The security standard

can help to develop secure complex systems in the following ways:

• It provides a step-by-step method to establish ISMS [87, 88, 81];

• It gives the best practice recommendations for information security

management, risks and controls [87].

The ISO/IEC 27001:2013 4.2.1 chapter dictates the foundational steps for

managing risks at a high level, and these steps can be applicable to the SE workflow

at the early stage of the systems development life cycle. The activities that could be

implemented in the MBSE model are as follows:

1. Define the risk assessment approach of the organization;

2. Identify the risks;

3. Analyse and evaluate the risks;

4. Identify and evaluate options for the treatment of risks;

5. Select control objectives and controls for the treatment of risks.

One of the biggest MBSE returns on investment is that by validating and

verifying system characteristics early, it enables fast feedback on requirements and

design decisions [15, 16]. This leads to the conclusion that the security solution

should be lean as well. The ISO/IEC 27001:2013 standard recommends using the

“Plan–Do–Check–Act” (PDCA) model (see Figure 2.8.), which guides that the

ISMS should be continually reviewed and improved, and this principle suits the

systems engineering process very well [87].

3 Overview of ISO/IEC 27001 was presented by Mažeika et al. in [94].

41

Figure 2.8. “Plan–Do–Check–Act” (PDCA) model applied to information security

management system (ISMS) processes [87]

The ISO/IEC 27001:2013 standard gives flexibility on what techniques and

methods to select for its implementation. In this thesis, the proposed MBSE method

for creating secure systems follows the ISO/IEC 27001:2013 requirements for

establishing the ISMS.

2.8. Summary of the Analysis

1. SE and the MBSE application encompass many disciplines that are

related to complex system creation; however, the security discipline,

which is crucial for a modern system, is vaguely integrated into MBSE.

The opportunity to define the security aspect (with limited capabilities)

was available only in one out of six leading MBSE methodologies.

2. The analysis of the leading MBSE methodologies allowed identifying

common patterns that could be leveraged in developing the MBSE

security method, i.e., what SE activities are performed at the early phase

of the system development cycle (e.g., identifying stakeholder needs and

system requirements, defining system context, modelling logical design

and system behaviour); does methodology support iterative/agile

modelling cycles and validation/verification capability; what standards,

languages and processes are used; what additional activities are

supported.

3. The literature analysis of security requirements engineering allowed to

overview the whole domain and define how the security requirement

should be understood in the scope of this thesis (i.e., as a refinement of

security goal, whereas the security goal refers to a part of the CIA

model).

4. The literature analysis of modelling approaches for security analysis

allowed identifying the key security concepts and main techniques and

described how these elements can be integrated into the MBSE process.

The aligned security concepts and techniques serve as a core source for

42

the creation of domain-specific language and method.

5. The analysis of security risk management standards presented how the

security risks are managed in a wider (organizational) context and what

are the common phases or steps (i.e., context establishment, risk

identification, risk analysis, risk evaluation, risk treatment).

6. The ISO/IEC 27001:2013 standard was selected for ensuring that the

risks would be systematically governed and mitigated with the proposed

MBSE security method.

7. The analysis of related works revealed that the existing security

approaches, methods and techniques could potentially be leveraged in

the MBSE environment if the common approach or method would be

created. Because of these reasons, the solution was taken to develop the

MBSE security method that would allow complete, concise, correct and

consistent model security aspects of the complex systems in the CASE

tool.

43

3. FEASIBILITY SURVEY4

The feasibility survey was conducted in order to validate the business needs

before creating the MBSE security method. The main goal of this feasibility study is

to support or deny the initial hypothesis that the MBSE would be helpful and needed

during the security analysis at the early stage.

A questionnaire was sent to 10 engineering companies from the following

industries: transportation, aerospace and defence, maritime, healthcare and

software. The survey questions were answered by systems engineers (total: 8), a

chief systems engineer and a security engineer. Below is provided a partial list of

participating companies: Rolls-Royce, ThyssenKrupp, OntoPilot, Intellerts, ProStep,

Altran, 2GetThere, Dassault Systemes, Air Direct Solutions. Other participants

asked not to disclose their organization names in the research.

The first two questions were dedicated to finding out how many organization

members are involved in systems engineering and how many are in security

engineering activities. The results are provided in Figure 3.1.

Figure 3.1. Chart presenting the number of members for systems engineering and security

engineering in the surveyed organizations

As shown in Figure 3.1., the numbers of organization members that are

involved in systems engineering activities are much higher than those in security

engineering. Since the MBSEsec method is based on including security activities

into the MBSE model, the effort of training security engineers the MBSE would be

significantly lower than vice versa.

The third question was dedicated to finding out the distribution of system

engineering activities. The majority of respondents perform system requirements

definition and functional design activities; in addition, logical and physical design

activities are widely used as well. All these activities, except physical design

creation, are usually conducted at the early stage of system development. All the

4 The feasibility survey results were published in [88].

44

results are provided in Figure 3.2.

Figure 3.2. Chart presenting distribution of systems engineering activities

The fourth question was “Are the security requirements or other security

artefacts represented (or linked) in your systems engineering models/documents?” In

total, 6 respondents said that it was linked, 2 said that it was partially linked, and 2

respondents said that the artefacts were not linked. Moreover, the respondents were

asked to elaborate more on this question; the opinions are provided below:

• No security artefacts produced. Security is approached as additional

requirements for the system.

• We currently only collaborate internally in our company.

• Some system attributes that are relevant for security are modelled. Some

model elements are also specifically created for security analysis purposes

(networks, for example).

• Mostly by linked security requirements.

• Documentation of assets/system objects and physical and logical

connection.

These answers lead to the conclusion that more than half the respondents trace

security requirements with the systems engineering elements but not in a consistent

way.

The fifth question was “Does your organization conform to any security

standard for system design?”, and 43 percent of respondents said that their process

conforms to the ISO/IEC 27001 standard; all the answers are provided in Figure 3.3.

Figure 3.3. Chart of the question: “Does your organization conform to any security standard

for system design?”

45

The next question was dedicated to finding out what techniques organizations

practice for security analysis. The majority of respondents (8) rely on security

requirements. The attack/threat scenarios and security processes/controls definition

were practiced by 3 respondents. All the results are provided in Figure 3.4.

Figure 3.4. Chart representing the benefits of integrating security activities into MBSE

model

The next question helped to figure out whether the security analysis integration

into MBSE could bring any benefits. The majority of participants agree or strongly

agree that all the listed advantages would be important. All the results are provided

in Figure 3.5.

Figure 3.5. Chart of the question: “Do you think that integrating security analysis activities

into MBSE would bring any of the following benefits?”

The last question was dedicated to checking which techniques would be useful

for validating/verifying the security model (see Figure 3.6.).

46

Figure 3.6. Chart representing MBSE techniques for validating/verifying security model

Seven out of ten respondents answered that the most useful techniques would

be model validation (e.g., checking if the current level of risk is acceptable) and

change impact analysis (e.g., analysing what assets will be impacted if the security

requirement is changed). Five respondents said that the coverage analysis (e.g.,

checking how many risks are not linked with the security controls) and model

simulation (e.g., validating if the attack scenario is executed correctly) would be

useful as well.

To summarize, the feasibility survey showed that both systems engineers and

security engineers acknowledge the importance and value of integrating systems and

security models; however, this has not been implemented yet on a vast scale in

practice or in a common way.

47

4. MBSE METHOD FOR CREATING SECURE SYSTEMS

This section covers the following topics:

1. The standards and tools that are used to formalize the domain-specific

language and the suggested MBSE method. These include UML 2.5

profiling capability, the MOF standard, DSML definition framework and

the requirements terminology by IETF RFC2119.

2. The approach on how the MBSEsec method is developed.

3. The intermediate steps towards implementing MBSEsec method (security

domain model, MBSE security profile) and the MBSEsec method itself

(implementation requirements, guidelines).

4.1. UML Profiles and MOF Standard for formalizing MBSE Security

Method

The Meta-Object Facility (MOF) standard by OMG provides platform-

independent metadata management framework and the necessary metadata services

for language development and model interoperability [89]. The MOF standard is a

de-facto approach for the definition of UML compatible domain-specific languages.

The UML language itself is defined as a model that is based on MOF, where each

UML element is an instance of one model element in MOF. Similarly, the model

that is created with UML is an instance UML model [90].

The UML profiling capability enables extending metaclasses from existing

metamodels in order to adapt them for domain-specific purposes. One of the most

representative UML extension is the SysML language, which reuses a subset of

UML 2.5 and provides additional elements to address SE requirements [41]. The

principal scheme of UML and SysML interrelationship in the context of OMG meta-

layer architecture is provided in Figure 4.1.

48

Figure 4.1. SysML and UML profiles interrelationship in the context of OMG meta-layer

architecture [89]

In this dissertation, the MBSE security method is formalized with the UML

2.5 profiling mechanism and with the DSML definition framework, which was

proposed by Šilingas et al. [91]. The UML profiling capability is not always

sufficient for creating domain-specific modelling language, and the DSML

framework provides an additional customization layer on top of the UML profile for

virtually transforming stereotypes into new metaclasses, defining custom diagrams

and verification rules. The new language defined with the DSML method out-of-the-

box supports transformations, model comparison and merge, validation, code

generation and other features provided by the UML CASE tool [91].

The diagram in Figure 4.2. presents the DSML modelling environment

extension for security analysis in the context of OMG meta-layer architecture. The

MBSE security profile is the extension of the UML profile; moreover, it inherits and

extends the necessary stereotypes from the SysML profile. The diagram definitions,

restrictions and rules for transforming stereotypes into metamodel are defined in the

customizations package.

49

Figure 4.2. The modelling environment extension for security in the context of OMG meta-

layer architecture from [91], extended by the author

4.2. Requirement terminology for the MBSEsec method implementation

Besides the UML 2.5 profiling capability and the DSML modelling

environment extension, this work introduces the requirements on how the MBSE

security method should be implemented. The requirements for the MBSEsec method

implementation serve two purposes:

1. It makes MBSEsec method tool independent. The requirements

specifically dictate what kind of diagrams, stereotypes, verification rules,

etc., are needed in each security phase. Following these requirements, the

MBSEsec method could be developed in any UML-based modelling tool.

2. It serves as usage guidelines. The requirements provide instructions on

which security artefacts engineers should model, how the security analysis

should be performed, in what sequence, what is the rationale for each

phase, etc.

In this research, the requirements terminology follows IETF RFC2119

recommendations [92]. Table 4.1. presents how the significance of requirements

should be interpreted in the MBSEsec method implementation.

Table 4.1. Requirement terminology by IETF RFC2119 used in the MBSEsec

method implementation [92]

Term Meaning in requirement text

SHALL This word, or the terms “REQUIRED” or “MUST“, means that the definition is

an absolute requirement of the specification.

SHALL NOT This phrase, or the phrase “MUST NOT”, means that the definition is an abso-

lute prohibition of the specification.

SHOULD This word, or the adjective “RECOMMENDED”, means that there may exist

valid reasons in particular circumstances to ignore a particular item, but the

full implications must be understood and carefully weighed before choosing a

different course.

SHOULD NOT This phrase, or the phrase “NOT RECOMMENDED”, means that there may ex-

ist valid reasons in particular circumstances when a particular behaviour is ac-

ceptable or even useful, but the full implications should be understood and the

50

Term Meaning in requirement text

case carefully weighed before implementing any behaviour described with this

label.

MAY This word, or the adjective "OPTIONAL", means that an item is

truly optional.

4.3. Approach for developing the MBSEsec method

The approach for developing the MBSEsec method is summarized in the

SysML Activity diagram below (see Figure 4.3.).

Figure 4.3. The approach for developing the MBSEsec method

The first step stands for identifying security domain concepts and relations.

This is a traditional modelling language design path where the key concepts of the

domain are determined at first, and then, a new language or method is developed to

support it [20]. The result of this activity is the Security Domain Model modelled in

51

the UML Class diagram.

Secondly, the concepts and relations that were identified in the Security

Domain Model are recreated as the stereotypes and tag definitions in the UML

Profile. Moreover, the additional stereotypes are created in order the MBSE security

profile would be aligned with the ISO/IEC27001:2013 security standard. The MBSE

Security Profile can be considered as the minimum viable product to model security

artefacts in the MBSE environment. The demonstration of the security profile usage

of performing security analysis was presented in [88].

Next, the initial Security Domain Model is updated by introducing which

security technique should tackle each concept. This mapping helps in deciding what

kind of diagram, view or tool is needed to manage the security artefacts in the

MBSE model.

The following step talks about defining the requirements for the MBSEsec

method implementation. The requirements explicitly specify what new stereotypes,

UML/SysML elements or relations shall be present in each proposed MBSEsec

diagram; how each MBSEsec phase shall be modelled; what are the traceability and

sequencing rules; how the model analysis shall be conducted; what is the

recommended model structure. The requirement text follows IETF RFC2119

recommendations for ensuring unambiguity. Moreover, it enables implementing

MBSEsec method on any UML/SysML based tool.

In the next step, the MBSEsec resource is prepared with the MagicDraw 19.0

CASE tool [93]. The resource includes the security profile, custom diagrams,

verification rules and other customizations. This MBSEsec resource can be installed

in any compatible MagicDraw tool.

The last step is to model sample projects for validating and verifying the

MBSEsec method. These sample models are included in the MagicDraw resource as

well.

4.4. Security Domain Model

The literature analysis of modelling approaches for security analysis and

security concepts alignment activities that are presented in the second section serve

as the core source for the domain model definition. The domain model that

represents the key security concepts and their relations is modelled with the

MagicDraw CASE tool in the UML class diagram (see Figure 4.4.). Initially this

security domain model was introduced by Mažeika et al. in [88].

52

Figure 4.4. The security domain model

The security domain model has three different types of concepts:

1. Security assurance concepts (white) define concepts that allow ensuring

system security or mitigating possible risks.

2. Items to be protected (green) present data and system assets that should be

identified and protected.

3. Risk-related concepts (red) characterize hostile concepts and possible

system weaknesses.

The security domain model represents the concepts and the relationships from

the security requirement engineering field. It is the first step for defining the

domain-specific language; the next section presents how the UML profile is

prepared according to this domain model.

4.5. MBSE Security Profile

The security domain model serves as a key input for creating a UML profile.

In addition to security domain model, the ISO/IEC 27001:2013 information security

standard is used to derive additional mandatory elements and properties for

establishing ISMS. The MBSE security profile diagram is presented in Figure 4.5.

The profile scheme contains five groups with relevant stereotypes. Each group is

aligned with the ISO/IEC 27001:2013 steps for ISMS.

53

Figure 4.5. The MBSE security profile

The first profile group of Configuration contains the stereotype for “Risk

Assessment Configuration” with the tag definition of “Criteria for Accepting Risks”.

A tag definition type is an integer number. This stereotype has derived from the

ISO/IEC 27001:2013 standard, and it serves for documenting methodology of risk

assessment and setting the criteria for accepting risks.

The next group is dedicated to security requirements. As a result, the “Security

Requirement” stereotype, which is a subtype of the SysML Requirement element

(linked with the UML Generalization relationship), is introduced.

The third group of Assets consists of stereotypes for defining and allocating

54

system assets. According to the security domain model, one general and three

specific stereotypes for Software/System/Data Assets are present. The tag definition

of “Asset Owner” is inherited from the abstract Asset stereotype to three specific

elements. Moreover, the dependency-based stereotype of Allocate from the SysML

profile is represented in this group.

The group of “Threats and Risks” has the following risk-related stereotypes

from the security domain model: Risk, Risk Impact, Probability, Threat,

Vulnerability. Moreover, the dependency-based stereotypes are created for all

possible relations: Misuse, Cause, Characterize, Use and Applicable To. The

attribute of “Level of Risk” for Risk is added according to the ISO/IEC 27001:2013

standard. The level of risk should be set considering the risk impact and probability.

The last group of “Security Objectives and Controls” refers to the objectives

and options for the risk treatment. The Security Control concept was identified

during the domain analysis; moreover, ISO/IEC 27001:2013 extends this group with

two related elements: Risk Treatment and Control Objective. Risk Treatment has

two attributes: “Risk Control” and “Transfer to External Party”. Accordingly, the

following stereotypes are created and added to this group: “Risk Treatment”,

“External Party”, “Control Objective” and “Security Control”.

The next section presents all the needed elements for the MBSEsec method

implementation (diagrams, customizations, OCL rules, etc.) and guidelines on how

to apply it.

4.6. MBSEsec Method implementation

This section introduces the expanded security domain model and requirements

for the MBSEsec method implementation. The first version of MBSEsec method

was introduced by Mažeika et al. in [94].

Before defining the MBSEsec method, the initial security domain model must

be updated. Firstly, the additional stereotypes that were identified in the “3.4 MBSE

Security Profile” section should be represented as concepts in the security domain

model (i.e., Risk Treatment, External Party, Control Objective). Secondly, MBSEsec

method presents security language elements as well as activities; thus, it is worth to

map the security techniques that were identified in section 2 with the security

concepts from the domain model. In Figure 4.6., the security-related techniques are

marked with the «Technique» stereotype (shapes filled with blue colour) and linked

with the security concepts. The dependency name describes how a specific concept

should be tackled with the corresponding security technique. Additionally, the

techniques and concepts are grouped into two categories: Black Box definition and

White Box definition. This categorization was used in MagicGrid approach [18], and

it helps to decide whether the security technique/concept should be considered when

the system is analysed at the abstract level with the focus on inputs and outputs

(Black Box definition) or when the system parts and internal connections are

analysed (White Box definition).

55

Figure 4.6. The security domain model with techniques

Some of the activities that are present in the MBSEsec method requirements

directly match the name and definition of the security technique from the analysis

part (e.g., SysML Requirements Diagram, Misuse Cases); some of them are derived

or combined (e.g., Asset Structure Definition, Threat and Risk Definition). The third

part of the techniques falls into the MBSE features category (e.g., verification rules,

activity simulation, allocation matrix). The Dolev–Yao attacker model, which was

identified during the literature analysis, is not included in the MBSEsec method.

This technique should not be used in the early phase as it requires knowing solution

details. The Dolev–Yao attacker model may be introduced in the later phases and

when formal verification is needed.

4.6.1. Overview of the MBSEsec method

This section presents a quick overview of the MBSEsec method

implementation (for the precise implementation requirements and guidelines see

next section). Figure 4.7. presents the principal diagram in which the phases and

underlying security techniques of the MBSEsec method are presented.

56

Figure 4.7. The phases of the MBSEsec method

In Table 3.3., it is explicitly specified what new stereotypes, UML/SysML

elements or relations shall be present in each proposed MBSEsec diagram.

Table 4.2. Stereotypes/elements that are available in the proposed MBSEsec

diagrams

MBSEsec diagram MBSEsec Stereotypes UML/SysML Elements

Asset Structure Definition

(an extension of SysML Block

Definition diagram)

- Data Asset

- System Asset

- Software Asset

- Allocate

Misuse Cases (an extension

of SysML Use Case diagram)
- Attacker - Use Case (should have invert-

ed notation, i.e., black back-

ground, white text)

- Association

- Include

- Extend

- Generalization

Attack/Threat Scenarios (an

extension of UML Activity

diagram)

- None - Initial Node

- Activity Final

- Action

- Control Flow

- Decision and Merge

- Fork and Join

- Swimlanes

Threat and Risk Definition

diagram (an extension of

SysML Block Definition dia-

gram)

- Risk

- Risk Impact

- Probability

- None

57

MBSEsec diagram MBSEsec Stereotypes UML/SysML Elements

- Risk Treatment

- Control Objective

- Security Control

- Threat

- Vulnerability

- Cause

- Use

- Misuse

- Applicable to

- Characterize

Security Objectives and

Controls Structure (an ex-

tension of UML Class dia-

gram)

- Risk Treatment

- Control Objective

- Security Control

- External Party

- None

Security Process Definition

(an extension of UML Ac-

tivity diagram)

- Control Objective - Initial Node

- Activity Final

- Action

- Control Flow

- Decision and Merge

- Fork and Join

- Swimlanes

There are several additions: the stereotype of “Risk Assessment

Configuration” can be created directly in the model or represented in the UML Class

diagram. The stereotype of “Security Requirement” shall be available to apply in the

SysML Requirements diagram or table.

4.6.2. Requirements for the MBSEsec method implementation

This section presents the requirements for the MBSEsec method

implementation. The requirements below follow IETF RFC2119 recommendations

that were described in the 3.2. section.

Prerequisites. Before starting security requirements definition and other

phases for the security analysis, the information about risk assessment methodology

shall be captured in the “Risk Assessment Methodology” stereotype (either as a link

to the document or filling the Documentation attribute). A value for the “Criteria for

Accepting Risks” attribute shall be set as an integer number. This criterion is used

when executing model verification rules (e.g., checking if there are any risks that do

not have risk treatment and whose risk acceptance level is higher than the acceptable

level of risk).

Phase 1. Identify Security Requirements. The first phase serves for

identifying the security requirements as an additional part of the functional and non-

functional requirements. The “Security Requirement” stereotype, which is a subtype

of the SysML Requirement, shall be used for capturing security related

requirements, constraints, policies, etc. The SysML Requirements diagram or table,

or both, shall be used to represent security requirements. The further security

requirement refinement should be additionally done with the SysML Use Case and

58

Activity diagrams.

Phase 2. Capture and Allocate Assets. The second phase is dedicated to

defining the objects that the organization needs to secure (assets) and allocating

them to the system’s parts from the logical system structure. SysML proposes two

concepts for defining system structural elements, i.e., Blocks that define types and

Parts that represent the usage of these blocks in a specific context. Correspondingly,

the assets definition can be performed in both ways; however, the goal of this phase

is to represent the structure, not their usage or internal connections. As a result, the

new diagram type of Asset Structure Definition, which is an extension of the Block

Definition Diagram shall be used for presenting Data, System and Software assets.

The identified assets and systems blocks shall be linked with the SysML Allocation

relationship (client-end is Asset, and supplier-end is Block). The allocation of these

elements allows using expressions based on the Object Constraint Language (OCL)

or other programming languages for running quantitative model verification, i.e.,

finding all system blocks that are not allocated to any asset element.

Phase 3. Model Threats and Risks. This phase represents two aspects of risk

and threat definition, i.e., behavioural and structural.

The behavioural risk and threat definition shall be specified with the extended

Use Case diagram for identifying Misuse Cases and the SysML Activity diagram for

modelling Attack Scenarios. The Attacker stereotype, which represents the role of

hostile actor, and use-case, which represents the unwanted usage of the system

(misuse), shall have notation with inverted colours in the misuse technique (i.e.,

background filled black; the examples are presented in the Case Studies section).

The attack scenario that represents a flow of actions dedicated damaging the

system’s integrity, availability and confidentiality shall use the standard notation of

the UML/SysML Activity diagram.

The structural threat and risk definition shall be specified with the new Threat

and Risk Definition diagram. This diagram shall be based on the UML Class

diagram. It shall be able to create and link the following elements: Risk, Risk

Treatment, Security Control, Control Objective, Risk Impact, Probability, Threat

and Vulnerability (the linking rules shall be similar to the ones presented in Figure

3.7). Additionally, a HAZOP style table may be used to summarize risk-related

information.

Phase 4. Decide on Objectives and Controls. The last phase is dedicated to

defining security control objectives and security controls. A new “Security

Objectives and Controls Structure” diagram (an extension of the UML Class

diagram) shall be used for defining elements of security objectives and controls. The

“Security Objectives and Control Structure” diagram shall allow to create the

following elements: Control Objective, Risk Treatment, Security Control, External

Party, Transfer to External Party and Apply Control. Risk Treatment may have more

than one Security Control or External Party.

The standard UML Activity Diagram shall be used for identifying workflow or

algorithm for security control. The security control should be modelled according to

the fUML1.1. standard; this would allow security engineers to simulate and verify it.

Sequencing. Intuitively, the MBSEsec method begins with the first phase and

59

finishes with the last; however, the phases of MBSEsec should not necessarily be

conducted consecutively. The PDCA model is recommended, in which the outcomes

of MBSEsec phases should be continuously reviewed and updated after each phase,

i.e., it is recommended to update the Risk Treatment in the Threat and Risk

Definition diagram (in Phase 3) after identifying the Security Controls in Phase 4.

Traceability. Traceability among different security phases (and within phases)

is a very important aspect of the MBSEsec method. The security model shall be

continuously maintained, i.e., the changes need to be managed; impact analysis

needs to be performed, etc. This is not possible without having specified traceability.

In the SysML language, there are four different types of relationships:

1. Direct relationship, e.g., refine, trace, allocate, derive;

2. Metaproperty, e.g., subject, owner of an element;

3. Composition (part property for block and call behaviour action for

activity);

4. Derived/Implied relationships (indirectly associated elements).

The recommended relationship types and mapping rules for the MBSEsec

method are depicted in Figure 4.8.

Figure 4.8. Traceability in the MBSEsec method

Model analysis. The automated quantitative model analysis, powered by the

MBSE tool, enables modellers to get answers about the security model

completeness, correctness and other questions.

60

Table 4.3. presents recommended rules for model analysis and supporting

algorithms (the provided rules are not limited to this list, and additional verification

rules can be introduced by any user). These algorithms can be formatted to specific

programming language syntax (e.g., OCL 2.0, JavaScript) and used as metrics or

verification rules to evaluate the current state of the model.

61

Table 4.3. Questions and algorithms for quantitative model analysis

Rule

ID

Question/Verification Rule Algorithm

R1 Are there any risks that do not have risk

treatment and whose risk acceptance level

is higher than an acceptable level of risk

defined in Risk Assessment Configuration?

SELECT all instances of Securi-

tyProfile::Risk
WHERE (SecurityProfile::Risk

does not have property whose

type is instance of SecurityPro-

file::RiskTreatment
AND SecurityPro-

file::Risk::RiskLevel is greater

than SecurityPro-

file::RiskAssessmentConfiguratio

n::CriteriaForAcceptingRisks)

R2 Are there any Risk Treatments that do not

have assigned Security Control or External

Party?

SELECT all instances of Securi-

tyProfile::RiskTreatment
WHERE (SecurityPro-

file::RiskTreatment does not

have property whose type is in-

stance of SecurityPro-

file::ExternalParty OR Securi-

tyProfile::SecurityControl

R3 Are there any risks that are not applicable

to any asset?

SELECT all instances of Securi-

tyProfile::Risk
WHERE NOT EXISTS (dependency of

SecurityProfile::ApplicableTo

between SecurityProfile::Risk

AND SecurityProfile::Asset)

R4 Are there any system blocks that are not al-

located to assets?

SELECT all instances of

SysML::Blocks
WHERE NOT EXISTS (dependency of

SysML::Allocate between

SysML::Block AND SecurityPro-

file::Asset)

Model structure. A well-organized model is easier to read, understand and

maintain. The SysML language has the Package element for structuring diagrams

and elements (including other packages). The MBSEsec method recommends using

the hierarchical structure divided by different phases as it is shown in Figure 4.9.

Two additional packages are dedicated to capture “Risk Assessment Configuration”

and contain elements for “Model Analysis” (e.g., change impact maps, metric

tables).

62

Figure 4.9. Recommended model structure by the MBSEsec method

4.7. Evaluation

This section presents the evaluation of the proposed MBSE method for

creating secure systems. The validation and evaluation consisted of several phases.

Firstly, the expert evaluation was conducted in order to check if the suggested

MBSEsec principles, concept and approach of integrating security analysis into

MBSE are viable. Then, two real-world systems were modelled using the proposed

MBSE security method in which the viability for cyber-physical and software

systems were presented. Finally, these case studies were experimentally tested

against four criteria: completeness, correctness, conciseness and consistency.

4.8. Qualitative evaluation of the MBSEsec method5

The qualitative evaluation of the MBSEsec method was done by surveying

experts from the MBSE, engineering and academic fields. The goal of the survey

was to validate the viability of the principles, concept and approach of integrating

security analysis into MBSE.

The surveyed experts were from various engineering organizations

(transportation, aerospace and defence, maritime, healthcare and software), in total

16, and from academia, in total 4. A partial list of organizations includes: SPEC

5 The survey results were presented by Mažeika et al. in [94].

63

Innovations, Oticon Medical, OAG Aviation Worldwide, Ocado, Dassault Systemes,

Booz Allen Hamilton, University of Arizona, University of Detroit Mercy, Kaunas

University of Technology. Other participants asked not to disclose their organization

names in the research.

The respondents assigned themselves to the following disciplines:

- Systems Engineering: in total 10,

- Software Engineering: in total 6,

- Requirements Engineering: in total 3,

- Mechanical Engineering: in total 1.

All the participants were practicing MBSE, and 60% of them were doing this

for more than 5 years.

In order to confirm the needed number of experts of the survey, the methodical

assumptions from the classical theory of tests were leveraged. According to [95], the

confidence of the aggregated individual judgments and the number of experts have a

steep decreasing non-linear dependency. In other words, the accuracy of the

evaluations of a small expert group of aggregated expert assessments in models with

equal weights is almost equal to the accuracy of large expert group evaluations.

Libby et al. [95] demonstrated that the accuracy of the survey is higher than 90%

when there are at least 7 experts, the precision after inviting more experts increases

only fractionally. For the MBSEsec method evaluation, there were surveyed 20

experts, which in current circumstance is a sufficient number of respondents.

The survey started by looking at the participants’ current work principles

related to the system development. The respondents were asked to answer if they

follow agile modelling practices with fast learning and validation cycles or they

prefer a linear approach (e.g., waterfall methodology). Most (75%) of the

respondents use agile methods, 15% use a mixed approach and 10% prefer the

waterfall methodology. As the MBSEsec method is based on the PDCA model,

which propagates fast creation and validation cycles, it should match the majority of

respondents’ practices.

The next question checked if the experts capture requirements in textual form

or they additionally use UML/SysML diagrams (e.g., Use Case, Activity diagram).

In fact, 53% of respondents use a textual form plus Use Case/Activity diagrams.

Only 14% of respondents specify requirements in textual form and/or SysML

requirements diagram. The distribution of expert opinions is provided in Figure

4.10. Moreover, the respondents were asked to elaborate more on this question, there

are their opinions:

• Strong preference for properties/state machines/etc. to define requirements

and use text as the last resort.

• Domain-specific modelling language (with requirements, security

requirements, etc.).

• Requirements are generated from SysML architecture models.

• We do a textual form and LML (Lifecycle Modelling Language).

64

Figure 4.10. Chart representing the importance of each MBSEsec method phase

The last question related to the work principles was “Do you identify security-

related requirements together with other functional and non-functional

requirements?” More than the half of respondents (60%) captures security

requirements, and this leads to the conclusion that the considerations of system

security are quite commonly made at the early stage of system development.

Next, the respondents were asked to evaluate the importance of security

mitigation phases from the MBSEsec method. Most of the participants said that the

identification of parts of the system that could be vulnerable is very important or

important. More than half of the participants agreed that all the other security phases

are important or very important as well. All the results are provided in Figure 4.11.

Figure 4.11. Chart representing the importance of each MBSEsec method phase

65

Furthermore, the experts were asked to share any other security

phases/activities (not mentioned in the previous question) that should be conducted

at the early stage of the system’s development; their opinions are as follows:

• It is not only important to identify parts themselves that could be

vulnerable but also their interaction/communication/links with other parts.

• Information exchange analysis.

• Embed security controls into the processes at all levels.

• Calculate vulnerability scores (e.g., CVSS), link security aspects with the

rest of the design.

• Threat model.

In terms of MBSE tools that would be the most suitable for running combined

Systems and Security Engineering analysis, participants tended to agree that

Representing information in different views (diagrams, tables, matrices) and the

Single source of truth are the most important. According to the experts, the least

important tool is Automated document generation. The detailed answers are

provided in Figure 4.12.

Figure 4.12. Chart representing the importance of MBSE tools for running combined

Systems and Security Engineering analysis

The experts were asked to compare their efficiency when they moved from

document-based system engineering to model-based system engineering. Most of

the respondents (65%) said that their productivity increased, and the remaining said

that productivity did not change, or it decreased. All the results are provided in

Figure 4.13.

66

Figure 4.13. Chart of the question: “Can you compare your efficiency when you moved

from document-based system engineering to model-based system engineering?”

The next question was “Did your work quality improve when you moved from

document-based system engineering to model-based system engineering?” The

majority of participants agreed that all the factors (Completeness, Consistency,

Communication, Less defects) were improved. All the results are provided in Figure

4.14.

Figure 4.14. Chart of the question: “Did your work quality improve when you moved from

document-based system engineering to model-based system engineering?”

The last evaluation objective was to find out the learning time required to start

using the MBSEsec method. For this, the experts were asked to approximately

estimate how long it would take to learn to model 5 new UML/SysML-based

diagrams that have 14 custom elements and 6 relations with the assumption that the

experts know the domain knowledge very well (i.e., do such analysis in Excel in

their daily work). 61% of respondents answered that it should take 2 to 5 days, while

33% indicated that it would take less than 2 days and 5.5% said that it would take up

to 2 weeks. Moreover, the participants commented more on this topic:

67

• It depends on how closely those new elements of the language map to the

customer domain.

• Assuming mastery in SysML, it will take 2 months to learn and use the

new elements in the production.

• Based on our experiences, it is best to have directly security (and safety)

related language concepts rather than general SysML or UML concepts.

The closer the mapping to the problem, the easier it becomes to use and

introduce.

Finally, a rank-based nonparametric test of Kruskal-Wallis H was used to

determine if there are statistically significant differences between experts with

different experiences (independent variable) and required time to learn to model new

UML/SysML based diagrams (dependent variable). The Kruskal-Wallis H test

allows analysing two or more groups of an independent variable on a continuous or

ordinal dependent variable [96]. The Kruskal-Wallis H test was conducted with the

Stata statistical software package [97]. Two experts’ opinions were not taken into

analysis because they were not able to provide a specific time range for this

question.

Table 4.4. presents the summarized results of Kruskal-Wallis equality-of-

populations rank test.

Table 4.4. Table representing the results of Kruskal-Wallis equality-of-populations

rank test

Experience Observations Rank sum

Less than a year 2 24.00

1 to 3 years 4 39.50

3 to 5 years 2 15.50

More than 5 years 10 92.00

χ2= 0.705 with 3 d.f.

Probability (p) = 0.8721

A Kruskal-Wallis test revealed that there was a statistically insignificant

difference in learning time between the four groups with a probability of 87.21%.

The null hypothesis that population medians are all equal cannot be rejected.

To summarize, the qualitative evaluation showed that the experts are

extensively using various range of UML/SysML diagrams for specifying system

requirements, and more than half of them are capturing security requirements. The

participants see an importance in mitigating security risks with MBSE tools at the

early stage of the system development life cycle. All the phases from the MBSEsec

method (with some additions) are relevant and important for the respondents. The

required learning time to learn additional security concepts is relatively low for

practicing MBSE users, and it as well brings higher efficiency and better work

quality.

68

4.9. Experimental evaluation of the MBSEsec method

The experimental evaluation of the MBSEsec method was conducted on two

different real-world projects. The first one represents the Hybrid Sport Utility

Vehicle, which stands for the cyber-physical system, and the second represents how

the MBSEsec method could help in rebuilding the legacy Flight Status software

system.

The experiment conditions were as follows:

- Two real-world models were created using the MBSEsec method with the

MagicDraw 19.0 CASE tool and SysML and Simulation toolkit plugins.

- The following criteria were checked for these models:

1. Method completeness, evaluated by checking if all the artefacts

that are mandatory for defining security-related documentation

(i.e., comparing with the requirements for establishing ISMS

according to the ISO/IEC 27001:2013 standard) were created in

the MBSE model.

2. Method conciseness, evaluated by checking how many of the

MBSEsec diagrams, elements, relationships were not necessary

for defining the security aspect.

3. Correctness, checked if the security aspect can be correctly

modelled with the MBSEsec method, evaluated by running UML

correctness constraints validation suite, which is available with the

MagicDraw 19.0 CASE tool [98].

4. Consistency, checked if the model consistency is ensured between

security phases and between the system model and security aspect.

4.9.1. Hybrid Sport Utility Vehicle-Power Control Unit

The first case study presents how the MBSEsec method can be used in

defining and analysing security aspects while designing automobile. For this, the

Hybrid Sport Utility Vehicle (HSUV) MBSE model from the OMG SysML

specification [41] was selected as a baseline and expanded with all the MBSEsec

phases. The first version of HSUV-Power Control Unit case study was presented by

Mažeika et al. in [94].

Problem summary: a modern vehicle is a subject to cyber-attacks through its

various network interfaces to the public network infrastructure as well as its direct

exposure to the open physical environment [99]. As identified by [100], there are

many vehicle parts and components that can be attacked (see Figure 4.15.);

nevertheless, this case study focuses on the Power Control Electronic Control Unit

(ECU), and it introduces how the security issues for this ECU can be identified,

analysed and mitigated.

69

Figure 4.15. Potential attack surfaces in the HSUV

Before starting the security analysis, security engineers must ensure that the

risk assessment methodology and criteria for accepting risks are decided and

documented. The methodology should be captured in the “Risk Assessment

Configuration” model element as documentation or link to the document. The

“Criteria for Accepting Risks” should be set as an integer number. For this case

study, the “Criteria for Accepting Risks” is set to 5, and the documentation part

indicates that the guidelines from ISO/IEC TR 13335-3 should be followed (see

Figure 4.16.) [101].

Figure 4.16. HSUV Risk Assessment configuration

The first phase of “Identify Security Requirements” says that the security

requirements shall be identified, captured and refined in the MBSE model. Ideally,

engineers who are working in the security requirements engineering discipline

should combine expertise in security, domain and requirements engineering fields to

provide a foundation for developing a secure system [102]. Depending on the

70

novelty of the system, the expertise of the security engineer and the security

requirements engineering methodology, the security requirements can be very

precise or more abstract. In this case study, for the Power Control ECU part, the

explicit security requirements dictate that external access to the ECU shall be limited

in two ways, i.e., by obfuscating access and rejecting unrecognized messages (see

the security requirements diagram in Figure 4.17.). Optionally, the security

requirements can be refined with the SysML Use Case and Activity diagrams (in

this case study, not refined). Moreover, the security requirements shall be linked

with the assets via the Trace relationship.

Figure 4.17. Security requirements for Power Control ECU

In the second phase of “Capture and Allocate Assets”, the following assets that

must be secured are identified: Power Control ECU Hardware, Embedded Software

and its Interface. As specified in the MBSEsec implementation requirements, the

assets should be created in Asset Definition Diagram (see Figure 4.18.).

Figure 4.18. Assets for the Power Control Unit

71

In the follow-up step, the assets should be linked with the systems blocks with

the SysML Allocate relationship. This is an interaction point between the security

model and the system model, which implies that the logical system structure

(blocks) should be modelled before or at the same time as assets. This traceability

can be created directly in the Asset Definition Diagram or using the allocation

matrix. For this case study, the allocation matrix is used (see Figure 4.19.). The

matrix columns represent the system structure, and the rows represent the assets.

The icon of a solid red arrow in the intersection represents direct allocation between

those elements. The icon of a dashed blue arrow means that elements are indirectly

allocated (e.g., if a composite block has assigned asset, the parent block has implied

allocation as well).

Figure 4.19. Assets allocated to HSUV blocks in the Dependency matrix

In the “Model Risks and Threats” phase, an experiment conducted by [103] is

reflected. The experiment presented how a long-range wireless cyber-attack was

physically tested using a real vehicle and malicious mobile application in a

connected car environment. Initially, the Misuse Case diagram is used to define the

high-level attack steps and the involved actors (as shown in Figure 4.20.).

72

Figure 4.20. The Misuse Case diagram reflecting a malicious diagnostic app usage

Then, a more detailed attack scenario is modelled with the Attack/Threat

scenarios diagram (an extension of SysML Activity diagram) (see Figure 4.21.). The

first swimlane presents a sequence of actions performed by the malicious app, and

other swimlanes represent the parts of the HSUV and what actions are invoked in

each partition. As a result of this attack scenario, the vehicle has a possible fatal

malfunction of rapidly accelerate up to 200km/h caused by the abnormal control

data that was transmitted from the malicious app.

73

Figure 4.21. The attack scenario reflecting fault injection through a malicious app

The correctness of the “Attack/Threat scenario” diagram can be verified by

running activity simulation. In Figure 4.22., it is presented how the simulation of the

attack scenario is being performed with the MagicDraw 19.0 CASE tool with the

Cameo Simulation Toolkit plugin. The green annotation over element indicates that

the elements are already successfully executed, and the red ones indicate the active

elements. The simulation console outputs the current execution state; moreover, it

provides error messages if there would be any.

74

Figure 4.22. The simulation of the attack scenario reflecting fault injection through a

malicious app

For the final step in the “Model Risks and Threats” phase, the Threat and Risk

Definition diagram with Risk, Risk Impact, Probability, Threat and Vulnerability

should be modelled. Respectively, the risk of “An attacker is able to take over a

Power Control ECU via the OBD-II port, reprogram it, and execute functions of

Power Subsystem” is captured. This risk has the risk impact of “Lost control of

HSUV acceleration” (aggregation relation between risk and risk impact). The

probability of this risk occurrence is set to “Low”. Based on the estimation of

probability and risk impact, the “Level of Risk” is set to 5. The possible threat is

“Fault injection on automotive diagnostic protocols” that potentially uses the

vulnerability of “Control Area Network (CAN) protocol”. The Threat and Risk

definition diagram with all the relevant security elements and relations is presented

in Figure 4.23.

75

Figure 4.23. The Threat and Risk definition diagram for the Power Control ECU

The “Decide Objectives and Controls” phase helps to identify objectives for

the security controls and define the risk mitigation controls. In the HSUV case, the

control objective is “System shall prevent unauthorized access to the Power Control

ECU” which is associated with the corresponding security control. Moreover, the

“Risk Treatment” element summarizes how the risk will be treated (by either

implementing security control(s) or transferring the risk to the external party or

both). In this case study, the risk will be mitigated only with the security controls

(see Figure 4.24.).

76

Figure 4.24. Security Objectives and Controls Structure for the Power Control Unit

The security control, in the form of an activity diagram, should present a

preventive algorithm and specific actions that would allow fulfilling the security

control objective. As it is shown in Figure 4.25., the activity diagram presents

multilayered protection that can be reused for the different ECUs. The correctness of

this diagram was verified by running fUML activity simulation. When the security

control is identified and modelled, the corresponding elements (e.g., Control

Objective, Security Control, Risk Treatment) could be displayed in the Threat and

Risk definition diagram and validated if all the needed traceability is established.

77

Figure 4.25. The security control for preventing unauthorized access to ECU

Finally, when both MBSE and security elements are created and linked in the

MBSE model, the automated analysis can be executed. The OCL expression can be

used as a base for the metric table (see Figure 4.26. which represents how many

blocks were covered by assets in a specific time stamp), or it can be used as a query

for collecting corresponding elements, or it can be used to validate the MBSE model

in real time.

Figure 4.26. Metric table that presents how many blocks are covered by assets

The next automated assistance of MBSE is impact analysis. Engineers can

analyse which system and security elements shall be reviewed if the initial system

requirement of “Power” is changed. In Figure 4.27., there is shown the relation map

diagram that presents such traceability from requirements to the system and software

assets.

78

Figure 4.27. The change impact map for the “Power” requirement

4.9.1.1. Experimental evaluation results for the HSUV-Power Control ECU

Case Study

This section presents the experimental evaluation results for the HSUV-Power

Control ECU Case Study. First, the HSUV-Power Control ECU model statistics are

provided in Table 4.5.

Table 4.5. Summary of the HSU-Power Control ECU model

Overall Model Summary

Number of parts/subsystems of a system 6 subsystems/24 parts

Number of diagrams (not including MBSEsec diagrams) 44

Number of elements (not including MBSEsec elements) 1733

MBSEsec Summary

Security defined for the number of parts/subsystems 0 subsystems/1 part

Number of created MBSEsec diagrams 6 MBSEsec diagrams, 2 standard

UML/SysML diagrams, 3 analysis views

Number of elements (in the scope of MBSEsec packages) 160

Number of not used MBSEsec diagram types 0

Number of created MBSEsec element types 12

Number of not used MBSEsec element types 2

Number of created MBSEsec relation types 6

Number of not used MBSEsec relation types 0

The overall model summary in Table 4.5. presents the statistics for the

baseline model by OMG. The HSUV system is composed of 6 subsystems and has

24 parts (as the HSUV model focuses on design decisions surrounding the power

subsystem, all the parts are related to this subsystem). The number of diagrams in

the model is 44, and it contains 1733 elements.

The MBSEsec summary in Table 4.5. introduces detailed information from the

security perspective. As it was described in the previous section, the case study

covered only one part of the Power Control ECU, which belongs to the Power

79

subsystem. The total number of created diagrams was 11, and the MBSEsec model

contained 160 elements. There was exploited all the MBSEsec specific diagrams (in

total 6). The SysML Requirements diagram was used for capturing security

requirements and the UML Class diagram for documenting Risk Assessment

configuration. Moreover, 3 analysis views were created (i.e., allocation matrix,

metric table and change impact map). There were used 12 out of 14 types of

MBSEsec elements, and all the relation types (in total 6).

One of the method evaluation criteria was completeness. As the security

phases for the HSUV were modelled with the MBSE Security Profile, which is

aligned with the ISO/IEC 27001:2013 steps for establishing ISMS (the exact

matching sections: 4.2.1 c) d) e) f) g) [87]), the HSUV-Power Control ECU model

proved that all the mandatory artefacts can be purposefully modelled with the

MBSEsec method.

The second criteria of method conciseness looked at how many MBSEsec

diagrams, elements, relationships were not used for defining the security aspect. As

it is presented in Table 4.5., two types of MBSEsec elements were not necessary for

this case study, one of which is “Data Asset” and the other “Third Party”. The Power

Control ECU does not store data; thus, this kind of element is objectless. The

“External Party” is needed to document the situation when the risk is transferred to

the third party, and, for this case study, a more representative situation was

showcased to present internal security control and surrounding processes.

The third criteria looked at the HSUV-Power Control ECU model correctness.

The model was validated by running the UML correctness constraints validation

suite, which is available with the MagicDraw 19.0 CASE tool [98]. The UML

correctness constrains validation suite includes, but is not limited to, the following

rules:

- A stereotype must be contained in a profile;

- The property is not owned or inherited by the context/type of nesting

element;

- Property is not defined as an association end;

- If min multiplicity on the composition end is 1, no other compositions are

allowed.

The validation results showed that there are no errors in any severity level (see

Figure 4.28.).

80

Figure 4.28. The HSUV-Power Control ECU model validation results

The last criterion talked about consistency assurance between different model

aspects. The MBSEsec provides traceability rules between elements in each security

phase as well as between MBSEsec elements and SysML model elements. Table

4.6. details how this complete linkage was established in the HSUV-Power Control

ECU model.

Table 4.6. Traceability between different aspects in the HSUV model

Source Target Relationship type Intersection

«Software Asset»

Power Controller (Em-

bedded Software)

«Block»

PowerControlUnit
Allocate System Model <> Phase 2

«System Asset»

Power Controller

(Hardware)

«Block»

PowerControlUnit
Allocate System Model <> Phase 2

«System Asset»

Power Controller (In-

terface)

«Block»

PowerControlUnit

Allocate System Model <> Phase 2

«Security Require-

ment» Limited signals

«Software Asset»

Power Controller (Embed-

ded Software)

Trace Phase 1 <> Phase 2

«Security Require-

ment» Obfuscated ac-

cess

«Software Asset»

Power Controller (Embed-

ded Software)

Trace Phase 1 <> Phase 2

«Risk» An attacker is

able to take over an

ECU via OBD-II port,

«Software Asset»

Power Controller (Embed-

ded Software)

«Applicable to» Phase 2 <> Phase 3

81

re-program it, and exe-

cute functions of Power

Subsystem

«System Asset»

Power Controller (Hard-

ware)

«Applicable to» Phase 2 <> Phase 3

«System Asset»

Power Controller (Inter-

face)

«Applicable to» Phase 2 <> Phase 3

«Risk Impact» Lost

control of HSUV ac-

celeration

«Software Asset»

Power Controller (Embed-

ded Software)

«Misuse» Phase 2 <> Phase 3

«Vulnerability» Con-

trol Area Network

(CAN) protocol

«System Asset»

Power Controller (Inter-

face)

«Characterize» Phase 2 <> Phase 3

«Risk» An attacker is

able to take over an

ECU via OBD-II port,

re-program it, and exe-

cute functions of Power

Subsystem

«Risk Treatment» Risk

mitigation by implementing

up-to-date malicious code

protection mechanisms and

integrity controls

Aggregation Phase 3 <> Phase 4

4.9.2. Flight Status System

The second case study presents how the MBSEsec method can be used in

defining and analysing security aspects while rebuilding legacy software system. For

this case study, there was selected a real-world Flight Status system, which collects

data from various sources (e.g., carriers, ADS-B stations, traffic flow management

systems), applies data processing and verification operations and distributes flight

status information to customers. In Figure 4.29., the Flight Status System Context

diagram shows how system of interest interacts with external actors. The case study

for identifying security issues with MBSE while rebuilding the Flight Status

software system was first time presented by Mažeika et al. in [104].

Figure 4.29. Flight Status System context diagram

82

Problem summary: when a decision to rebuild a legacy system has taken one

of the key questions, i.e., How to ensure that the rebuilt system is secure? Mocanu

highlights that many legacy systems were built without security in mind; moreover,

the stricter regulatory requirements have helped to heighten the attention given to

security for new systems [105]. This question is especially important for the Flight

Status system, because any violation of availability or integrity of this system may

cause disruptions and heavy losses in the aviation industry, i.e., inactivity of Paris

Charles De Gaulle airport may cost over €1 million per hour to France’s GDP [106].

In this case study, the re-architect method for rebuilding the legacy software

system is presented, in which the legacy system is rebuilt according to the modern

software development practices, i.e., using the Strangler pattern where once the new

service is ready, it is put into use, and the old component is decommissioned

altogether [107].

The first stage of Flight Status system modernization is the development of the

“Incoming Data Processing” microservice. In such a case, for this microservice, the

following security goals/requirements that reflect data integrity and system

availability are created either in SysML Requirement diagram or table:

• Integrity: the “Incoming Data Processing” microservice shall ensure the

accuracy and consistency of supplier data during transfer.

• Availability: the “Incoming Data Processing” microservice shall ensure

continuous availability to the legitimate users whenever they require it.

The next phase is the identification of assets that must be secured. In this case

study, the assets of the “Incoming Data Processing” microservice are Client Data,

Flight Status Dataset and the component itself. All these elements are captured in the

“Asset Definition Diagram” and allocated to the system’s blocks (see Figure 4.30.).

Figure 4.30. The assets of the “Incoming Data Processing” microservice and their

allocations

In the “Model Risks and Threats” phase, there is presented a real-life scenario

that happened for the U.S. based software development company, which sent major

European airport false information on real flights, thus causing data integrity loss

[106]. The high-level attack steps and involved parties (system users and hostile

83

actors) are modelled with the Misuse Case diagram as shown in Figure 4.31.

Figure 4.31. Flight Status misuse cases

Then, a more detailed attack scenario is specified with the Attack/Threat

scenarios diagram (see Figure 4.32.) and verified by running an activity simulation.

The first swimlane presents a sequence of actions performed by Attacker, and other

swimlanes represent the parts of the system and what actions are invoked in each

partition.

Figure 4.32. Flight Status attack scenario

84

Next, the summarized information about Risk, Risk impact, Probability,

Threat, Vulnerability should be provided, and possible risk treatment, security

objectives and controls identified. In this case study, the possible control objective

could be such: System shall identify and authorize the sender. The security control,

in the form of the Security Process Definition diagram (an extension of SysML

Activity diagram), could present how the identification and authorization

mechanism (e.g., OAuth 2.0) should be implemented in the Flight Status system

environment. Figure 4.33. presents all the related security elements and relations

between them.

Figure 4.33. The Threat and Risk definition diagram for the Flight Status system

When both MBSE and security artefacts are linked, the change impact can be

reviewed, i.e., security engineer wants to update the Availability security

requirement by adding a note that the system availability shall be no less than

99.99%. In such a case, the change impact map can show all the effected elements

from the security requirement to the assets (see Figure 4.34.).

85

Figure 4.34. The change impact map for the “Availability” requirement

4.9.2.1. Experimental evaluation results for the Flight Status System Case

Study

The summarized statistical information for the Flight Status System model

study is presented in Table 4.7. (as the Flight Status system is modelled without

having baseline model, the overall model summary is not provided).

 Table 4.7. Summary of the Flight Status System model

MBSEsec Summary

Security defined for the number of parts/subsystems 1 part

Number of created MBSEsec diagrams 4 MBSEsec diagrams, 1 analysis view

Number of elements (in the scope of MBSEsec packages) 179

Number of not used MBSEsec diagram types 2

Number of created MBSEsec element types 12

Number of not used MBSEsec element types 2

Number of created MBSEsec relation types 6

Number of not used MBSEsec relation types 0

For this case study, there was modelled the initial phase of the software system

modernization project, in which the security aspect of the “Incoming Data

Processing” microservice was created. In total, 4 MBSEsec diagrams and 1 change

impact map were created. The Flight Status MBSE model contained 179 elements

and covered all the artefacts from the ISO/IEC 27001:2013 standard for establishing

ISMS and proved the criterion of method completeness.

In terms of method conciseness, two types of MBSEsec elements were not

obligatory for this case study, one of which is the “System Asset” stereotype and the

other “Third Party”. The “System Asset” stereotype is applicable only to cyber-

physical systems, and this case study presented a software system. Another

MBSEsec stereotype that was not used was “Third Party”. In the ISO 27001:2013

standard, this is one of the possible actions for the treatment of risks; thus, it needs

to be in the scope of the MBSEsec method. Moreover, two MBSEsec diagram types

were not created in this case study, i.e., “Security Objectives and Controls Structure”

and “Security Process Definition”. The “Security Process Definition” diagram for

identification and authorization workflow was not separately presented (the previous

case study and other examples proved that the Activity diagram is suitable for

86

defining such algorithms). The “Security Objectives and Controls Structure”

represents “Control Objectives”, “Security Controls” and “Risk Treatments”, and the

same elements could be represented in the “Threat and Risk definition” diagram. In

this case study, only the “Threat and Risk definition” diagram with all the elements

and relations between them were modelled. In the future versions of the MBSEsec

method, these diagrams may be merged in order to have a more concise method.

The UML correctness constraints validation suite was run against the Flight

Status System model, and the validation results showed that there are no errors at

any severity level. This proved the criterion of model correctness.

The consistency between different model aspects is presented in Table 4.8.

Table 4.8. Traceability between different aspects in the Flight Status System model

Source Target Relationship type Intersection

«Software Asset»

Incoming Data Pro-

cessing microservice

«Block»

Incoming Data Processing

Component

Allocate System Model <> Phase 2

« Data Asset»

Flight Status Dataset

«Block»

Database
Allocate System Model <> Phase 2

«Data Asset»

Client Data
Allocate System Model <> Phase 2

«Security Require-

ment» Integrity

« Data Asset»

Flight Status Dataset
Trace Phase 1 <> Phase 2

«Security Require-

ment» Availability

«Software Asset»

Incoming Data Processing

microservice

Trace Phase 1 <> Phase 2

«Risk» An attacker is

able to send incorrect

Flight Status message

«Software Asset»

Incoming Data Processing

microservice

«Applicable to» Phase 2 <> Phase 3

«Data Asset»

Flight Status Dataset

«Applicable to» Phase 2 <> Phase 3

«Risk Impact» Data in-

tegrity loss

«Software Asset»

Incoming Data Processing

microservice

«Misuse» Phase 2 <> Phase 3

«Vulnerability» Unpro-

tected API for posting

Flight Status data

«Software Asset»

Incoming Data Processing

microservice

«Characterize» Phase 2 <> Phase 3

«Risk» An attacker is

able to send incorrect

Flight Status message

«Risk Treatment» Risk

mitigation by implementing

up-to-date security control

Aggregation Phase 3 <> Phase 4

87

4.10. Summary of the answers to the research questions

The summary of answers to the research questions that were introduced in the

“1.3 Problem statement and research questions” are presented in Table 4.9.

Table 4.9. Summary of the research questions and answers to the research questions

Research questions Answers to research questions

1. Is MBSE a suitable application for de-

fining and managing security requirements

and conducting security analysis for com-

plex cyber-physical and software systems

at the early stage of system creation?

Yes, the MBSE is a suitable application for these use

cases because of the following reasons:

• SE and the MBSE application serve as an umbrella

for many disciplines that are related to designing

and developing complex systems. Security re-

quirements engineering and security analysis activ-

ities can be conducted in parallel to designing a

new system. As MBSE serves as a central role and

single-source-of-truth in the engineering organiza-

tions, moving security-related activities to the

MBSE application would be a reasonable step for-

ward.

• The literature analysis, feasibility study and ex-

perts’ survey showed that there is a need to com-

bine these disciplines/activities.

2. Are the UML Profiles and MOF stand-

ard the right techniques and standards for

creating and formalizing the domain-

specific language and MBSE security

method?

The UML Profiles and MOF standard is a very mini-

mum technique for formalizing the MBSE method. The

reasons for this are as follows:

• The UML 2.5 Profiling capability and MOF stand-

ard gives a lightweight extension mechanism to the

UML language. It allows defining stereotypes, tag

definitions and constraints.

• The proposed MBSE security profile was presented

as a minimum viable product for defining security

requirements and conducting security analysis in

[104]. Moreover, the analysed method of UML Sec

used a similar extension mechanism.

In this thesis, the additional techniques and standards

were selected for formalizing MBSEsec method:

• DSML Definition Framework for developing and

packaging custom diagrams, verification rules,

samples and other customizations.

• The requirements text that follows IETF RFC2119

guidelines for enabling to implement MBSEsec on

any UML/SysML Case Tool.

3. How can security requirement engineer-

ing and security analysis activities be in-

cluded in the MBSE process to design a

secure system and leverage MBSE ad-

vantages?

In order to include security requirement engineering and

security analysis activities in the MBSE process, several

things are necessary (1) or recommended (2, 3, 4):

1. The MBSE security profile that contains security-

related stereotypes and tag definitions.

2. The DSML definition package that contains cus-

tom diagrams, verification rules, samples and other

customizations.

3. Guidelines on how to use the MBSE security

88

Research questions Answers to research questions

method, i.e., what are the prerequisites, what to ac-

complish in each security phase, how to establish

traceability, how to run model analysis, how to

structure the model.

4. Training on how to use the MBSEsec method.

4. What are the security concepts that

should be introduced in systems modelling

language in order to support security as-

pects during the early stages of system de-

velopment?

There are three groups of security concepts that should

be introduced in the systems modelling language:

1. Security assurance concepts, i.e., concepts that al-

low ensuring system security or mitigating possible

risks (e.g., Security Requirement; Security Con-

trol).

2. Items to be protected (e.g., Asset).

3. Risk-related concepts that characterize hostile con-

cepts and possible system weaknesses (e.g., Risk,

Risk Impact, Vulnerability, Threat).

5. What domain specific extensions (e.g.,

stereotypes, diagrams, verification rules)

are needed for security analysis?

The proposed MBSEsec method recommends that elev-

en diagrams/views should be fulfilled during security

analysis (six of them are new diagram types).

The total number of security-related stereotypes is twen-

ty.

Four rules for quantitative model analysis are suggested.

All the needed domain specific extensions are presented

in the “4.6 MBSEsec Method implementation” section.

6. Can the automated MBSE tools, includ-

ing but not limited to simulation, verifica-

tion and validation, change impact analy-

sis, single source of truth, be successfully

applied in the security field by using the

proposed method?

Yes, the following automated MBSE tools were validat-

ed in the MBSEsec method case studies:

• OCL Verification Rules;

• Activity Simulation (fUML 1.1.);

• Change impact analysis (what system and security

elements are impacted if the initial requirement is

being changed);

• Metric table (e.g., how many blocks are covered by

assets).

7. Does the proposed MBSE security

method allow completely, concisely, cor-

rectly and consistently model security as-

pects of both cyber-physical and software

systems in the CASE tool?

Yes, the proposed MBSE security method allow com-

pletely, concisely, correctly and consistently model se-

curity aspects of both cyber-physical and software sys-

tems in the CASE tool. Two detailed case studies were

modelled to validate this:

• Hybrid Sport Utility Vehicle-Power Control Unit

(Cyber-physical system),

• Flight Status System (Software system).

Experimental evaluation presented that all the artefacts

that are mandatory for defining security-related docu-

mentation (i.e., comparing with the requirements for es-

tablishing ISMS, according to the ISO/IEC 27001:2013

standard) can be created in a model-based environment.

In the expert survey, the respondents suggested addi-

tional activities (e.g., information exchange analysis,

CVSS vulnerability scores, threat model) that could be

considered in the future version of the MBSEsec meth-

od.

89

5. CONCLUSIONS

The research work presented in this dissertation focused on how the security

requirement engineering and security analysis activities could be integrated into the

MBSE application conducted at the early phase of the system development lifecycle.

The main aim of the thesis was to introduce the MBSE method for creating secure

complex systems. The answers to the research objectives and main contributions are

summarized below:

1. The state-of-the-art analysis of related works has revealed that MBSE is the right

application for incorporating security requirements engineering and security

analysis activities into the system engineering process. The security aspect is

crucial in designing a complex system; however, the most popular MBSE

methodologies do not provide (or provide very limitedly) such capability.

Additionally, the feasibility survey, during which the representatives from ten

large engineering companies from the following industries transportation,

aerospace and defence, maritime, healthcare and software, confirmed the idea’s

viability of incorporating security into MBSE.

2. The baseline for the MBSE method for creating secure complex systems was a

security domain model that aligned and mapped different security concepts and

techniques from the security requirement engineering and security risk

management fields, and UML/SysML-compliant modelling approaches for

security analysis.

3. The proposed MBSEsec method consists of a UML profile with security-related

stereotypes and tag definitions, the DSML definition package that contains

custom diagrams, verification rules and sample projects. The UML profile and

DSML definition package were prepared with the MagicDraw 19.0 CASE tool

and can be used in any compatible tool. Moreover, the MBSEsec method comes

with the guidelines and implementation requirements that follow IETF RFC2119

recommendations; this enables to implement MBSEsec on any UML/SysML

Case Tool. The suggested method is one of the first methods in the MBSE field

at the time of publication.

4. The expert evaluation, during which experts from the MBSE, engineering and

academic fields were surveyed proved that the proposed MBSEsec principles and

concept of integrating security analysis into MBSE are viable. The qualitative

experts’ evaluation showed that respondents see the importance of mitigating

security risks with MBSE tools at the early stage of the system’s development

life cycle. All the phases from the proposed MBSEsec method are relevant and

important for the experts, and the required learning time to learn additional

security concepts is relatively low for practicing MBSE users. The experts

noticed that additional activities or techniques (e.g., CVSS vulnerability scores,

information exchange analysis, threat model) could be introduced in future

versions of the MBSEsec method.

5. In the experimental evaluation part, two case studies were modelled to present

how the MBSEsec method can be applied to two different real-world projects.

The first one represented the Hybrid Sport Utility Vehicle, which stands for the

90

cyber-physical system, and the second represented how the MBSEsec method

could help in rebuilding a secure Flight Status software system. The experimental

evaluation showed that the MBSEsec method enables to create complete,

concise, consistent and correct models.

91

6. REFERENCES

1. NSF-National Science Foundation, “Cyber-physical systems (CPS),” 2017.

[Online]. Available: https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.pdf.

2. INCOSE, “The challenge of complex systems,” [Online]. Available:

http://www.incose-coa.org/the-challenge-of-complex-syst.

3. J. Guckenheimer and J. M. Ottino, “Foundations for Complex Systems

Research in the Physical Sciences and Engineering,” NSF Workshop, 2008.

4. INCOSE, Systems Engineering Handbook: A Guide for System Life Cycle

Processing and Activities, 4th edition, Hoboken, NJ, USA: John Wiley & Sons,

2015.

5. INCOSE, “SE vision 2025,” 2014. [Online]. Available:

https://www.incose.org/AboutSE/sevision.

6. R. S. Kalawsky, J. O'Brien, S. Chong, C. Wong, H. Jia, H. Pan and P. R.

Moore, “Bridging the gaps in a model-based system engineering workflow by

encompassing hardware-in-the-loop simulation,” IEEE Systems Journal, vol. 7,

no. 4, p. 593–605, 2013.

7. J. Holt, S. Perry, M. Brownsword, D. Cancila, S. Hallerstede and F. O. Hansen,

“Model-based requirements engineering for system of systems,” in roceedings

of the 2012 7th International Conference on System of Systems Engineering

(SoSE), Genova, Italy, July 2012.

8. INCOSE UK, “What Is Model Based Systems Engineering (V2),” 2015.

[Online]. Available:

http://www.incoseonline.org.uk/Program_Files/Publications/zGuides_9.aspx?C

atID=Publications.

9. É. Dubois, P. Heymans, N. Mayer and R. Matulevičius, “A Systematic

Approach to Define the Domain of Information System Security Risk

Management,” in Intentional Perspectives on Information Systems Engineering,

Berlin, Springer, 2010, pp. 289-306.

10. C. Raspotnig, P. Karpati and A. L. Opdahl, “Combined Assessment of Software

Safety and Security Requirements: An Industrial Evaluation of the CHASSIS

Method,” Journal of Cases on Information Technology (JCIT), vol. 20, no. 1,

pp. 46-69, 2018.

11. G. Styles and R. S. Kalawsky, “Research Top Challenges for MBSE in Industry

4.0 and IoT – Workshop Report,” 2015.

12. P. H. Nguyen, S. Ali and T. Yue, “Model-based security engineering for cyber-

physical systems: a systematic mapping study,” Information and Software

Technology, vol. 83, pp. 116-135, 2017.

13. B. L. Papke, “Enabling design of agile security in the IOT with MBSE,” in

Proceedings of the 2017 12th System of Systems Engineering Conference

(SoSE), Waikoloa, HI, USA, 2017.

14. J. Jürjens and P. Shabalin, “Tools for secure systems development with UML,”

92

International Journal on Software Tools for Technology Transfer, vol. 9, pp.

527-544, 2007.

15. A. M. Madni and S. Purohit, “Economic Analysis of Model-Based Systems

Engineering,” Systems , vol. 7, no. 1, pp. 1-12, 2019.

16. E. Carroll, “Systematic Literature Review: How Is Model-Based Systems

Engineering Justified?,” 2016. [Online]. Available:

http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_i

w_2017:sand2016-11485_pe_uur_161109_howismodel-

basedsystemsengineeringjustified_.pdf.

17. NIST, “Security Considerations in the System Development Life Cycle,” 2008.

[Online]. Available: https://www.nist.gov/publications/security-considerations-

system-development-life-cycle.

18. A. Morkevicius, A. Aleksandraviciene, D. Mazeika, L. Bisikirskiene and Z.

Strolia, “MBSE Grid: A Simplified SysML-Based Approach for Modeling

Complex Systems,” in INCOSE International Symposium, Adelaide, Australia,

2017.

19. A. R. Hevner, S. T. March, J. Park and S. Ram, “Design Science in Information

Systems Research,” MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004.

20. T. W. Olle, H. G. Sol and I. G. MacDonald, Information Systems

Methodologies: A Framework for Understanding, Boston, MA, USA: Addison-

Wesley, 1991.

21. KTU, “Research Report,” 2018. [Online]. Available: https://ktu.edu/wp-

content/uploads/2016/08/Moksliniai_tyrimai_2018_ataskaita.pdf.

22. Microsoft, “Microsoft Security Development Lifecycle,” 2018. [Online].

Available: https://www.microsoft.com/en-us/securityengineering/sdl.

23. Microsoft, “Security Development Lifecycle for Agile Development,” 2012.

[Online]. Available: https://docs.microsoft.com/en-us/previous-

versions/windows/desktop/ee790621(v=msdn.10).

24. A. Kilčiauskas, G. Butkus and E. Sakalauskas, “Authenticated Key Agreement

Protocol Based on Provable Secure Cryptographic Functions,” INFORMATICA,

vol. 31, no. 2, p. 277–298, 2020.

25. A. Kajackas, R. Rainys and A. Aputis, “Assessment of Cyber Attacks Influence

over Internet Network,” Elektronika Ir Elektrotechnika, vol. 113, no. 7, pp. 89-

92, 2011.

26. J. Janulevičius, “Method of information security risk analysis for virtualized

systems. Doctoral dissertation,” Vilnius Gediminas Technical University,

Vilnius, 2016.

27. Sebok, “Systems Engineering: Historic and Future Challenges,” 2019. [Online].

Available:

https://www.sebokwiki.org/wiki/Systems_Engineering:_Historic_and_Future_

Challenges.

28. IEEE Reliability Society, “Systems of Systems,” 2014. [Online]. Available:

93

https://rs.ieee.org/technical-activities/technical-committees/systems-of-

systems.html.

29. International Organization for Standardization, “ISO/IEC/IEEE 15288:2015

Systems and software engineering — System life cycle processes,” 2015.

30. INCOSE Canada, “Modern Challenges in Systems Engineering,” 2015.

[Online]. Available: http://incosecanada.weebly.com/conference-2015.html.

31. I. Graessler, J. Hentze and T. Bruckmann, “V-Models for Interdisciplinary

Systems Engineering,” in DESIGN 2018 15th International Design Conference,

Dubrovnik, Croatia, 2018.

32. Federal-Highway-Administration, “Systems Engineering for Intelligent

Transport Systems. US-DoT, US Department of Transportation.,” 2007.

33. L. E. Hart, “Introduction To Model-Based System Engineering (MBSE) and

SysML,” [Online]. Available: https://www.incose.org/docs/default-

source/delaware-valley/mbse-overview-incose-30-july-2015.pdf.

34. J. A. Estefan, “INCOSE Survey of MBSE Methodologies,” INCOSE TD 2007-

003-02, Seattle, WA, USA, 2008.

35. INCOSE Technical Operations, “INCOSE SE Vision 2020,” 2007. [Online].

36. C. Delp, D. Lam, E. Fosse and C.-Y. Lee, “Model based document and report

generation for systems engineering,” in IEEE Aerospace Conference, Big Sky,

MT, USA, 2013.

37. OMG, “Unified Modeling Language,” 2017. [Online]. Available:

https://www.omg.org/spec/UML/About-UML/.

38. OMG, “Model Driven Architecture,” [Online]. Available:

https://www.omg.org/mda/.

39. D. Silingas and R. Butleris, “Towards customizing UML tools for enterprise

architecture modeling,” in IADIS international conference, Barcelona, Spain,

2009.

40. A. Morkevicius and S. Gudas, “Enterprise Knowledge Based Software

Requirements Elicitation,” Information Technology and Control, vol. 40, no. 3,

pp. 181-190, 2011.

41. Object Management Group, “About the OMG System Modeling Language

specification version 1.6,” [Online]. Available:

https://www.omg.org/spec/SysML/About-SysML/.

42. Object Management Group, “What is SysML?,” 2017. [Online]. Available:

https://www.omgsysml.org/what-is-sysml.htm.

43. R. Cloutier and M. Bone, “Compilation of SysML RFI- Final Report, Systems

Modeling Language (SysML),” 2010. [Online]. Available:

http://www.omgwiki.org/OMGSysML/lib/exe/fetch.php?media=sysml-

roadmap:omg_rfi_final_report_02_20_2010-1.pdf.

44. S. C. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse and B.

Sam, “Applying Model Based Systems Engineering (MBSE) to a standard

94

CubeSat,” in IEEE Aerospace Conference, Big Sky, MT, USA, 2012.

45. INCOSE, “MBSE Wiki: Mehtodology and Metrics,” 2020. [Online]. Available:

http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology.

46. D. Mazeika, A. Morkevicius and A. Aleksandraviciene, “MBSE driven

approach for defining problem domain,” in System of Systems Engineering

(SoSE), Kongsberg, Norway, 2016.

47. INCOSE, “Object-Oriented SE Method,” [Online]. Available:

https://www.incose.org/incose-member-resources/working-

groups/transformational/object-oriented-se-method.

48. P. Pearce and M. Hause, “ISO-15288, OOSEM and Model-Based Submarine

Design,” in SETE/APCOSE, Brisbane, Australia, 2012.

49. H.-P. Hoffmann, Model-Based Systems Engineering with Rational Rhapsody

and Rational Harmony for Systems Engineering - Deskbook 4, 2013.

50. B. P. Douglass, Harmony aMBSE Deskbook (Version 1.00), 2017.

51. B. P. Douglass, “Agile Model-Based Systems Engineering (aMBSE),” in IBM

Symposium Systemes, Paris, 2014.

52. T. Weilkiens, SYSMOD - The Systems Modeling Toolbox - Pragmatic MBSE

with SysML, MBSE4U - Tim Weilkiens, 2015.

53. M. D. Ingham, R. D.Rasmussen, M. B. Bennett and A. C. Moncada,

“Generating requirements for complex embedded systems using State

Analysis,” Acta Astronautica, vol. 58, no. 12, pp. 648-661, 2006.

54. D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins and M.

Ingham, “An ontology for State Analysis: Formalizing the mapping to SysML,”

in IEEE Aerospace Conference, Big Sky, MT, USA, 2012.

55. D. Long and Z. Scott, A Primer for Model-Based Systems Engineering, 2012.

56. D. Mellado, C. Blanco, L. E.Sánchez and E. Fernández-Medina, “A systematic

review of security requirements engineering,” Computer Standards &

Interfaces, vol. 32, no. 4, p. 153–165, 2010.

57. US-CERT, “SQUARE process,” 2013. [Online]. Available: https://www.us-

cert.gov/bsi/articles/best-practices/requirements-engineering/square-process.

58. J. Viega, “Building security requirements with CLASP,” in SESS@ICSE, St.

Louis, Missouri, USA, 2005.

59. D. Mellado, E. Fernández-Medina and M. Piattini, “Applying a Security

Requirements Engineering Process,” in European Symposium on Research in

Computer Security (ESORICS’06), Guildford, UK, 2006.

60. CORAS, “The CORAS method,” 2015. [Online]. Available:

http://coras.sourceforge.net/.

61. B. Fabian, S. Gurses, M. Heisel, T. Santen and H. Schmidt, “A comparison of

security requirements engineering methods,” Requirements Engineering, vol.

15, no. 1, p. 7–40, 2010.

62. P. Salini and S. Kanman, “Survey and analysis on security requirements

95

engineering,” Computers & Electrical Engineering, vol. 38, no. 6, p. 1785–

1797, 2012.

63. ISO/IEC 13335-1:2004, Information technology - Security techniques -

Management of information and communications technology security: Part 1,

International Organization for Standardization, 2007.

64. E. Albrechtsen, “Safety vs Security,” 2003. [Online]. Available:

http://www.iot.ntnu.no/users/albrecht/rapporter/notat%20safety%20v%20securi

ty.pdf.

65. S. Kriaa, L. Pietre-Cambacedes, M. Bouissou and Y. Halgand, “A survey of

approaches combining safety and security for industrial control systems,”

Reliability Engineering & System Safety, vol. 139, p. 156–178, 2015.

66. S. Kriaa, L. Pietre-Cambacedes, M. Bouissou and Y. Halgand, “A survey of

approaches combining safety and security for industrial control systems,”

Reliability Engineering & System Safety, vol. 139, pp. 156-178, 2015.

67. Object Management Group, “About the Unified Architecture Framework

Specification Version 1.0,” 2017. [Online]. Available:

http://www.omg.org/spec/UAF/1.0/Beta2/.

68. A. Morkevicius, L. Bisikirskiene and G. Bleakley, “Using a systems of systems

modeling approach for developing Industrial Internet of Things applications,”

in 12th System of Systems Engineering Conference (SoSE), Waikoloa, HI, USA,

2017.

69. P. Vaughan, “Integrating UPDM with SysML and UML on a DoD acquisition

program,” in OMG UAF & MBSE information day, Reston, VA, USA, 2015.

70. G. J. Bleakley and M. Haus, “The united architecture framework the Internet of

Things and power systems,” 2016. [Online]. Available:

http://www.omg.org/news/meetings/tc/ca-16/special-events/iot-

presentations/Hause-Bleakley.pdf.

71. SANS Institute, “Using the department of defense architecture framework to

develop security requirements,” 2014. [Online]. Available:

https://www.sans.org/reading-room/whitepapers/bestprac/department-defense-

architecture-framework-develop-security-requirements-34500.

72. NIST, “NIST, DOD, intelligence agencies join forces to secure U.S. cyber

infrastructure,” 2009. [Online]. Available: https://www.nist.gov/news-

events/news/2009/06/nist-dod-intelligence-agencies-join-forces-secure-us-

cyber-infrastructure.

73. C. Raspotnig, V. Katta, P. Karpati and A. L. Opdahl, “Enhancing CHASSIS: A

Method for Combining Safety and Security,” in International Conference on

Availability, Reliability and Security, Regensburg, Germany, 2013.

74. C. Raspotnig, P. Karpati and V. Katta, “A Combined Process for Elicitation and

Analysis of Safety and Security Requirements,” in Enterprise, Business-

Process and Information Systems Modeling, Heidelberg, Germany, 2012.

75. Y. Roudier and L. Apvrille, “SysML-Sec: a model driven approach for

96

designing safe and secure systems,” in 3rd International Conference on Model-

Driven Engineering and Software Development, Angers, France, 2015.

76. Y. Roudier and L. Apvrille, “SysML-sec: a model-driven environment for

developing secure embedded systems,” in 8th conference on the security of

network architecture and information systems (SARSSI'2013), Mont de Marsan,

France, 2013.

77. J. Jürjens, “UMLsec: extending UML for secure systems development,,” in The

Unified Modeling Language, 2002.

78. H. Mouratidis and J. Jurjens, “From goal‐driven security requirements

engineering to secure design,” International Journal of Intelligent Systems, vol.

25, no. 8, p. 813–840, 2010.

79. F. Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stølen and J. Aagedal,

“The CORAS methodology: model-based risk management using UML and

UP,” in UML and the Unified Process, Buenos Aires, Argentina, 2003.

80. D. Watson and A. Jones, “Risk Management,” in Digital Forensics Processing

and Procedures, 2013, pp. 109-176.

81. R. Evans, A. Tsohou, T. Tryfonas and T. Morgan, “Engineering secure systems

with ISO 26702 and 27001,” in 5th International Conference on System of

Systems Engineering, Loughborough, UK, 2010.

82. E. Aroms, “NIST Special Publication 800-30 Risk Management Guide for

Information Technology Systems,” Create Space, Scotts Valley, 2012.

83. International Standards Organisations, “ISO/IEC 27005:2018 Information

technology — Security techniques — Information security risk management,”

Geneva, Switzerland, 2018.

84. International Standards Organisations, “ISO 31000:2018 Risk management —

Guidelines,” Geneva, Switzerland, 2018.

85. C. J. Alberts, S. Behrens, R. D. Pethia and W. R. Wilson, “Operationally

Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Framework,

Version 1.0,” Software Engineering Institute, 1999 .

86. ISMS.online, “Information Security Management System (ISMS),” [Online].

Available: https://www.isms.online/information-security-management-system-

isms/.

87. International Standards Organisation, “ISO/IEC 27001 - Information

Technology—Security Techniques—Information Security Management

Systems—Requirements,” Geneva, Switzerland, 2013.

88. D. Mažeika and R. Butleris, “Integrating security requirements engineering into

MBSE: Profile and guidelines,” Security and Communication Networks, p. 1–

12, 2020.

89. Object Management Group, “About the Meta Object Facility specification

version 2.5.1,” 2016. [Online]. Available:

https://www.omg.org/spec/MOF;jsessionid=FE501A2F1AABFF3587B96AA1

DE7F4EFF.

97

90. UML diagrams, “UML, Meta Meta Models and Profiles,” 2020. [Online].

Available: https://www.uml-diagrams.org/uml-meta-models.html.

91. D. Šilingas, R. Vitiutinas, A. Armonas and L. Nemuraitė, “Domain-specific

modeling environment based on UML profiles,” in Information technologies,

Kaunas, Lithuania, 2009.

92. S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,”

1997. [Online]. Available: https://tools.ietf.org/html/rfc2119.

93. CATIA No Magic, “Distributing Resources,” [Online]. Available:

https://docs.nomagic.com/display/MD190/Distributing+Resources.

94. D. Mažeika and R. Butleris, “MBSEsec: Model-Based Systems Engineering

Method for Creating Secure Systems,” Applied Sciences, vol. 10, no. 7, pp. 1-

18, 2020.

95. R. Libby and R. K. Blashfield, “Performance of a composite as a function of

the number of judges,” Organizational Behavior and Human Performance, vol.

21, no. 2, pp. 121-129, 1978.

96. Laerd Statistics, “Kruskal-Wallis H Test using Stata,” 2014. [Online].

Available: https://statistics.laerd.com/stata-tutorials/kruskal-wallis-h-test-using-

stata.php.

97. Stata, “Stata: Software for Statistics and Data Science,” 2020. [Online].

Available: https://www.stata.com/.

98. CATIA No Magic, “Predefined validation suites,” 2020. [Online]. Available:

https://docs.nomagic.com/display/MD190/Predefined+validation+suites.

99. A. Chattopadhyay and K.-Y. Lam, “Security of autonomous vehicle as a cyber-

physical system,” in 7th International Symposium on Embedded Computing

and System Design (ISED), Durgapur, India, 2017.

100. Intel , “Automotive Security Research Workshops,” 2015. [Online].

Available:

https://www.intel.com/content/dam/www/public/us/en/documents/product-

briefs/automotive-security-research-workshops-summary.pdf.

101. ISO/IEC, “Information technology - Guidelines for the management

of IT Security - Part 3,” [Online]. Available:

https://www.sis.se/api/document/preview/611327/.

102. M. Riaz and L. Williams, “Security requirements patterns:

Understanding the science behind the art of pattern writing,” in 2012 Second

IEEE International Workshop on Requirements Patterns (RePa), Chicago, IL,

USA, 2012.

103. S. Woo, H. J. Jo and D. H. Lee, “A practical wireless attack on the

connected car and security protocol for in-vehicle CAN,” IEEE Transactions on

Intelligent Transportation Systems, vol. 16, no. 2, pp. 993 - 1006, 2015.

104. D. Mažeika and R. Butleris, “Identifying Security Issues with MBSE

while Rebuilding Legacy Software Systems,” in IEEE 15th International

Conference on System of Systems Engineering (SoSE), Budapest, Hungary,

98

2020.

105. V. Mocanu, “Requirements for Security Enhancements to Legacy

Software with RUP,” Information Security Journal: A Global Perspective, vol.

19, no. 4, pp. 226-236, 2010.

106. SESAR, “Addressing airport cyber-security. Final report,” 2016.

[Online]. Available:

https://www.sesarju.eu/sites/default/files/documents/news/Addressing_airport_

cyber-security_Full_0.pdf.

107. S. Behara, “Monolith to Microservices Using the Strangler Pattern,”

2018. [Online]. Available: https://dzone.com/articles/monolith-to-

microservices-using-the-strangler-patt.

99

7. LIST OF PUBLICATIONS OF DONATAS MAŽEIKA ON THE THEME

OF DISSERTATION

Articles in Journals referred in Clarivate Analytics Web of Science (CA WoS)

database:

1. D. Mažeika, R. Butleris. Integrating Security Requirements

Engineering into MBSE: Profile and Guidelines // Security and

Communication Networks Journal (Hindawi/Wiley). London, UK, 2020;

pp. 1–12.

2. D. Mažeika; R. Butleris. MBSEsec: Model-Based Systems Engineering

Method for Creating Secure Systems // Applied Sciences journal;

MDPI: Basel, Switzerland, 2020; pp. 1-18.

Conference articles:

1. D. Mažeika; A. Morkevičius, A. Aleksandravičienė. System of Systems

Engineering Conference (SoSE) 2016 11th, Kongsberg, Norway. "MBSE

driven approach for defining problem domain", Date of Conference: 12-

16 June 2016, Date Added to IEEE Xplore: 15 August 2016, DOI:

10.1109/SYSOSE.2016.7542911, Publisher: IEEE

2. A. Morkevičius, A. Aleksandravičienė, D. Mažeika, L. Bisikirskienė, Ž.

Strolia. 27th Annual INCOSE International Symposium, Adelaide, Australia

MBSE Grid: A Simplified SysML-Based Approach for Modeling

Complex Systems. INCOSE INTERNATIONAL SYMPOSIUM Volume

27, Issue 1, July 2017, Pages: 136–150, DOI: 10.1002/j.2334-

5837.2017.00350.x

3. D. Mažeika; R. Butleris. 9th International Workshop "Data analysis

methods for software systems" – DAMSS 2017, Druskininkai, Lithuania.

Model-Based Systems Engineering Approach for Creating Secure

Complex Systems. Proceeding of 9th International Workshop DAMSS

2017: Druskininkai, Lithuania, November 30 - December 3, 2017 ISBN:

978-9986-680-64-2

4. D. Mažeika; R. Butleris. IEEE 15th International Conference of System of

Systems Engineering (SoSE), 2020, Budapest, Hungary. "Identifying

Security Issues with MBSE while Rebuilding Legacy Software

Systems". Date of Conference: 2-4 June 2020, Date Added to IEEE

Xplore: 1 July 2020, DOI: 10.1109/SoSE50414.2020.9130491, Publisher:

IEEE

SL344. 2021-05-04, 12,25 leidyb. apsk. l. Tiražas 14 egz. Užsakymas 117.

Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas

Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas

